LMT Spring 2024 Guts Round - Part 1	Team Name:
1. [12] Given that $\frac{2^{0-2\cdot 4}}{2\cdot 0! + 2^{-4}}$ can be exp	pressed as $\frac{a}{b}$ where a and b are relatively prime integers
$2 \cdot 0! + 2^{-4}$ calculate $20a + \frac{b}{24}$.	
2. [12] How many permutations $(a_1, a_2, 1 \le k \le 10)$?	\ldots, a_{10}) of $(1,2,\ldots,10)$ are there such that $\lfloor \frac{a_k}{k} \rfloor$ is odd for all
3. [12] In pentagon $DZHAO$, DZ is par Given that $DZ = HA = 10$, $ZH = 8$, and	allel to HA , ZH is perpendicular to HA , and $\angle AOD$ is 90° $AO = DO$, find $[DZHAO]$.
LMT Spring 2024 Guts Round - Part 2	Team Name:
4. [15] Given that $x - \lfloor y \rfloor = \frac{107}{7}$ and $y - \lceil y \rceil$	$ x = -\frac{139}{9}, \text{ find } x - y.$
	heel has radius 6 feet and the back wheel has radius 8 feet nt wheel has revolved exactly 5 more times than the back
labelled with {0,6,12,18,24,30}. Eddie with {0,1,2,3,4,5} and the other has sec	as faces labelled with $\{0,1,2,3,4,5\}$ and the other has faces has two fair spinners: One spinner has sections labelled tions labelled with $\{0,1,2,3,4,5,6,7\}$. Sam rolls his two dice t is the probability that the sum of Sam's results equals the
LMT Spring 2024 Guts Round - Part 3	Team Name:
$\{1,2,3,4,5,6\}$ such that all pairs of oppos	e shape of unit cubes. Each die has its 6 faces labelled with site sides sum to 7. He arranges these dice so that they form argest possible sum of numbers on the surface of the shape?
-	e integers n , let a_n be the result when we insert the digit 1 10017, $a_2 = 100117$, and so on.) Find $gcd(a_{2023}, a_{2024}, a_{2025})$
	uniformly at random on a dartboard. The dartboard is in nexagons $TOPHER$ and $PICKLE$, where T lies outside of the dart lands in quadrilateral $ROCK$?
LMT Spring 2024 Guts Round - Part 4	Team Name:
10. [21] Find the coefficient of x^3 in the e	xpansion of $(1 + x + x^2 + x^3 + x^5)^6$.
11. [21] Find the least positive integer n r nonnegative integer m .	relatively prime to 14 such that $14^m + n$ is not prime for any
12. [21] In $\triangle ABC$ satisfying $AB = 15$, BC	$C = 20$, and $\angle ABC = 90^{\circ}$, let D and E be points in the plane

......

LMT Spring 2024 Guts Round - Part 5	Team Name:
	$-x^6 - y^6 + x^2y^2 = 0$ in the xy -coordinate plane, and let T denote the origin by 45°. At how many points do S and T intersect?
14. [27] Let <i>a</i> , <i>b</i> , and <i>c</i> be the roots of	f the polynomial $3x^3 + 4x^2 + 3x + 4$.
Evaluate	h c
$\frac{a}{4a^2+3}$	$\frac{b}{3a+4} + \frac{b}{4b^2+3b+4} + \frac{c}{4c^2+3c+4}.$
designed for toddlers, so a tiebreak chosen at random from the real nur least tiebreaker value. However, ea	fors have all received a perfect score on the Little Mini Tiny round ter is required. Each person's tiebreaker value is independently mbers between 0 and 1. Competitors are ranked from greatest to ch person also independently has $\frac{1}{2}$ chance of forgetting to fill them tie-ing for 2025th. What is Jiwu's expected placement?
LMT Spring 2024 Guts Round - Part 6	Team Name:
16. [33] In hexagon $ABCDEF$ inscri FB = 14 and $DE = 6$. Find the area of	shed in a circle, $EF = FA = AB = BC$, and $CD = DE$. Suppose of $ABCDEF$.
17. [33] Find the number of ordered that $a+2b+3c+4d$ is a multiple of	quadruples (a, b, c, d) of nonnegative integers less than 12 such f 5.
and behind the other door is Ella. Y either the middle or left door. The h	onTy", there are three doors. Behind two of the doors is a pickle on the control on the control on the control of the doors is a pickle on the control of th
 Jerry Xu: He knows where Ella he reveals a random door (left 	is and will never reveal the door that she lies behind, otherwise or middle).
2. Ben Yin: He does not know wh	nere Ella is and will reveal a random door (left or middle).
 Evin Liang: He will not reveal t he will reveal the middle door. 	the middle door unless Ella is behind the left door, in which case
Find the probability that there is a p	pickle behind the left door.
LMT Spring 2024 Guts Round - Part 7	Team Name:
$2L \times 2L$ chessboard. Find the maxim board such that A attacks B but B d except it "loops around" at the end as are the first and last rows. A rook	oblem 21. Jacob places $2L^2$ bishops and $2L^2$ rooks on a toroidal num possible number of ordered pairs (A, B) of two pieces on the oes not attack A . (A toroidal chessboard is a normal chessboard, of the board. The first column and the last column are adjacent, attacks another piece if those two pieces are in the same row or em. A bishop attacks another piece if those two pieces are in the een them.)
	blem 19. Let $DZHAO$ be a regular pentagon, and let R be the that $[ZHAO] = M$, evaluate $[DZHAO] + [ORZ]$.
21. [39] Let T be the answer to proble such that $\frac{3^k-1}{301}$ is an integer.	em 20. Find the number of integers k between 1 and $\frac{T}{6}$ inclusive

LMT Spring 2024 Guts Round - Part 8	Team Name:
22. [45] Evaluate	$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{(n+1)2^{2n}}.$
23. [45] Evaluate	
$(\tan 5^{\circ} + \tan 85^{\circ})(\tan 15^{\circ})$	$^{\circ}$ + tan 75 $^{\circ}$)(tan 25 $^{\circ}$ + tan 65 $^{\circ}$)(tan 35 $^{\circ}$ + tan 55 $^{\circ}$).
the foot of the altitude from D to AC ,	$ABCD$, let P be the foot of the altitude from D to BC , Q be and R be the foot of the altitude from A to BC . Let $S \neq D$ be \overline{DP} . Suppose lines \overline{PQ} and \overline{AR} intersect at X . Given $AR = 5$, if AX .
LMT Spring 2024 Guts Round - Part 9	Team Name:
this question and let N be the total nu	ive integers. Let n be the number of integers you submitted to mber of integers submitted across all teams. Let d be the least r integers. You will receive $\left\lfloor \frac{30}{n(d^2+1)} \right\rfloor$ points.
26. [30] Let <i>N</i> be the number of obtuse Estimate <i>N</i> . Submit an integer. If you	se triangles with integer side lengths that are at most 2024. submit X , you will receive $\max\left(\left\lfloor 30 \cdot \min\left(\frac{N}{X}, \frac{X}{N}\right)\right\rfloor, 0\right)$ points.
	$P(n)$'s value be the product of the digits of n (in base 10). an of $\{f(1), f(2), \ldots, f(2024)\}$. If you submit X , you will recieve

......