Accuracy Round Solutions

Lexington High School

May 14th, 2022

1. [6] Kevin colors a ninja star on a piece of graph paper where each small square has area 1 square inch. Find the area of the region colored, in square inches.

Proposed by Kevin Zhao

Solution. 12
Simple geometry figures gives us 12
2. [8] Let $a \boldsymbol{\wedge} b=\frac{a^{2}-b^{2}}{2 b-2 a}$. Given that $3 \boldsymbol{\wedge} x=-10$, compute x.

Proposed by Muztaba Syed

Solution. 17
To make computation easier simplify $a @ b=\frac{a^{2}-b^{2}}{2 b-2 a}=\frac{(a+b)(a-b)}{-2(a-b)}=\frac{a+b}{-2}$ with difference of squares ($a-b$ is non- 0 for the purposes of our computation). Now we have $3+x=-10 \cdot-2 \Longrightarrow x=17$
3. [10] Find the difference between the greatest and least values of $\operatorname{lcm}(a, b, c)$, where a, b, and c are distinct positive integers between 1 and 10, inclusive.

Proposed by Ephram Chun

Solution. 626
The smallest is $\operatorname{lcm}(1,2,4)=4$, and the greatest is $\operatorname{lcm}(7,9,10)=630$, so the answer is 626 .
4. [12] Kevin runs uphill at a speed that is 4 meters per second slower than his speed when he runs downhill. Kevin takes a total of 80 seconds to run up and down a hill on one path. Given that the path is 300 meters long (he travels 600 meters total), find how long Kevin takes to run up the hill in seconds.

Proposed by Kevin Zhao

Solution. 50
We note that letting D be the distance, we have $\frac{D}{x}+\frac{D}{x+4}=80$ where we want $\frac{D}{x}$. Solving for x gets $x=6$ and so our answer is $\frac{300}{6}=50$.
5. [14] A bag contains 5 identical blue marbles and 5 identical green marbles. In how many ways can 5 marbles from the bag be arranged in a row if each blue marble must be adjacent to at least 1 green marble?

Proposed by Ephram Chun

Solution. 16
We proceed with casework. If there is 1 blue marble and 4 green marbles then there are $\binom{5}{1}=5$ ways to arrange the marbles. If there are 2 blue marbles and 3 green marbles then there is a total of $\frac{5!}{3!2!}=10$ total ways to arrange GBGBG. But 2 arrangements do not satisfy the conditions which are $G G G B B$ and $B B G G G$. Therefore there are 8 possible arrangements from this case. If there are 3 blue marbles then it must be BGBGB, GBBGB, BGBBG in order for each blue marble to be adjacent to at least 1 green marble. Thus, our answer is $5+8+3=16$
6. [16] Jacob likes to watch Mickey Mouse Clubhouse! One day, he decides to create his own Mickey Mouse head shown below, with two circles ω_{1} and ω_{2} and a circle ω, and centers O_{1}, O_{2}, and O, respectively. Let ω_{1} and ω meet at points P_{1} and Q_{1}, and let ω_{2} and ω meet at points P_{2} and Q_{2}. Point P_{1} is closer to O_{2} than Q_{1}, and point P_{2} is closer to O_{1} than Q_{2}. Given that P_{1} and P_{2} lie on $O_{1} O_{2}$ such that $O_{1} P_{1}=P_{1} P_{2}=P_{2} O_{2}=2$, and $Q_{1} O_{1} \| Q_{2} O_{2}$, the area of ω can be written as $n \pi$. Find n.

Proposed by Kevin Zhao

Solution. 10
Note that $\angle P_{1} O_{1} Q_{1}=\angle P_{2} O_{2} Q_{2}=90^{\circ}$ because of the parallelity and symmetry. Now, we notice that letting M be the midpoint of $O_{1} O_{2}$, then because $\angle O O_{1} P_{1}=\angle O O_{1} Q_{1}=45^{\circ}$, then because $O M \| O_{1} O_{2}$, we have that both $\triangle O_{1} M O$ and $\triangle O_{2} M O$ are isosceles right triangles so $O M=3$. Thus, ω 's area can be expressed as $\pi \cdot r^{2}$ where we want r^{2}; We note that $r^{2}=O M^{2}+M P_{1}^{2}=3^{2}+1^{2}=10$.
7. [18] A teacher wishes to separate her 12 students into groups. Yesterday, the teacher put the students into 4 groups of 3 . Today, the teacher decides to put the students into 4 groups of 3 again. However, she doesn't want any pair of students to be in the same group on both days. Find how many ways she could form the groups today.

Proposed by Ephram Chun

Solution. 1296
We let the groups of students on the previous day be $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$, and D_{1}, D_{2}, D_{3}. We know that A_{1}, A_{2}, and A_{3} must be in different groups. The remaining group must contain one student from group B, one from C, and one from D. There are $3 \cdot 3 \cdot 3=27$ ways to do this. The remaining six students can be put into groups with the students from group A in $6 \cdot 2 \cdot 2 \cdot 2=48$ ways. Therefore there are $27 \cdot 48=1296$ ways.
8. [20] A ray originating at point P intersects a circle with center O at points A and B, with $P B>P A$. Segment $\overline{O P}$ intersects the circle at point C. Given that $P A=31, P C=17$, and $\angle P B O=60^{\circ}$, find the radius of the circle.

Proposed by Ephram Chun

Solution. 224
Let r be the radius of the circle. By Power of a Point, we have that $P A(P B)=P C(P C+2 r)$. We are given that $P A=31$ and $P C=17$, so we have that $31 P B=17^{2}+34 r$. Next, to find $P B$, we can use the fact that $\angle P B O=60^{\circ}$. We have that
$O A$ and $O B$ are both radii of the circle, so $O A=O B$. Since $\angle P B O=60^{\circ}$ and $O A=O B$, it follows that $\angle B A O=60^{\circ}$, so $\angle A O B=60^{\circ}$. We have that triangle $A O B$ is equilateral, so we get that $A B=r$, and $P B=P A+A B=31+r$. Substituting, we get that $31(31+r)=17^{2}+34 r$. Simplifying, we get that $961+31 r=289+34 r$, so $3 r=672$. Finally, we get that $r=224$, so the radius of the circle is 224
9. [22] A rook is randomly placed on an otherwise empty 8×8 chessboard. Owen makes moves with the rook by randomly choosing 1 of the 14 possible moves. Find the expected value of the number of moves it takes Owen to move the rook to the top left square. Note that a rook can move any number of squares either in the horizontal or vertical direction each move.

Proposed by Owen Jiang

Solution. 70
States also works
10. [24] In a room, there are 100 light switches, labeled with the positive integers $\{1,2, \ldots, 100\}$. They're all initially turned off. On the i th day for $1 \leq i \leq 100$, Bob flips every light switch with label number k divisible by i a total of $\frac{k}{i}$ times. Find the sum of the labels of the light switches that are turned on at the end of the 100th day.
Proposed by BPL
Solution. 584
Let us consider the k th locker. In order for it to be open at the end, it must have been flipped an odd number of times. Additionally, if $a b=k$, then the a th student will have flipped $k b$ times, and the b th student will have flipped it a times, flipping it a total of $a+b$ times. This applies to any factor pair of k, meaning that the number of times k is flipped is just the sum of all of its factors.

That means all open lockers must have the sum of their factors be odd. Let us consider some prime p that is in the prime factorization of k. Using the formula for the sum of factors of a number, if that prime appears a times in k 's prime factorization, it will multiply the sum of factors by $\left(1+p+p^{2}+\ldots p^{a}\right)$. So, we need that value to be odd, which means we either need a to be even, or p to be 2 . Using this, we can systematically list all lockers that will be left open, and sum their numbers up. $1,2,4,8,16,32,64 \Rightarrow 1279,18,36,72 \Rightarrow 13525,50,100 \Rightarrow 17549,98 \Rightarrow 147$
So, the sum of all lockers that will be left open is $127+135+175+147=584$
11. [TIEBREAKER] Let L be the number of times the letter L appeared on the Speed Round, M be the number of times the letter M appeared on the Speed Round, and T be the number of times the letter T appeared on the Speed Round. Find the value of $L M T$.
Proposed by Kevin Zhao
Solution.
$L M T=172 \cdot 89 \cdot 368=5633344$.

