Team Round

Lexington High School

May 14th, 2022

1. [7] Derek and Jacob have a cake in the shape a rectangle with dimensions 14 inches by 9 inches. They make a deal to split it: Derek takes home the portion of the cake that is less than one inch from the border, while Jacob takes home the remainder of the cake. Let $D: J$ be the ratio of the amount of cake Derek took to the amount of cake Jacob took, where D and J are relatively prime positive integers. Find $D+J$.
2. [7] Five people are standing in a straight line, and the distance between any two people is a unique positive integer number of units. Find the least possible distance between the leftmost and rightmost people in the line in units.
3. [7] Let the four real solutions to the equation $x^{2}+\frac{144}{x^{2}}=25$ be r_{1}, r_{2}, r_{3}, and r_{4}. Find $\left|r_{1}\right|+\left|r_{2}\right|+\left|r_{3}\right|+\left|r_{4}\right|$.
4. [7] Jeff has a deck of 12 cards: $4 \mathrm{Ls}, 4 \mathrm{Ms}$, and 4 Ts . Armaan randomly draws three cards without replacement. The probability that he takes $3 L \mathrm{~s}$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
5. [7] Find the sum

$$
\sum_{n=1}^{2020} \operatorname{gcd}\left(n^{3}-2 n^{2}+2021, n^{2}-3 n+3\right)
$$

6. [7] For all y, define cubic $f_{y}(x)$ such that $f_{y}(0)=y, f_{y}(1)=y+12, f_{y}(2)=3 y^{2}, f_{y}(3)=2 y+4$. For all $y, f_{y}(4)$ can be expressed in the form $a y^{2}+b y+c$ where a, b, c are integers. Find $a+b+c$.
7. [7] Kevin has a square piece of paper with creases drawn to split the paper in half in both directions, and then each of the four small formed squares diagonal creases drawn, as shown below.

Find the sum of the corresponding numerical values of figures below that Kevin can create by folding the above piece of paper along the creases. (The figures are to scale.) Kevin cannot cut the paper or rip it in any way.

1

2

4

8

16
8. [7] The 53-digit number
$37,984,318,966,591,152,105,649,545,470,741,788,308,402,068,827,142,719$
can be expressed as n^{21} where n is a positive integer. Find n.
9. [7] Let $r_{1}, r_{2}, \ldots, r_{2021}$ be the not necessarily real and not necessarily distinct roots of $x^{2022}+2021 x=2022$. Let $S_{i}=r_{i}^{2021}+2022 r_{i}$ for all $1 \leq i \leq 2021$. Find $\left|\sum_{i=1}^{2021} S_{i}\right|=\left|S_{1}+S_{2}+\ldots+S_{2021}\right|$.
10. [7] In a country with 5 distinct cities, there may or may not be a road between each pair of cities. It's possible to get from any city to any other city through a series of roads, but there is no set of three cities $\{A, B, C\}$ such that there are roads between A and B, B and C, and C and A. How many road systems between the five cities are possible?

Team Long Answer

Lexington High School

May 14th, 2022

This test is a team proof round. Each team has 90 minutes for both this round and the team computational round, and takes them at the same time. The total number of obtainable points in this team proof round is 130 , and the team computational round has 70 obtainable points.

Each problem submitted in a new subsection should be on a separate page labeled with the problem number and the team name. Note that problems in the same subsection don't need to be on different pages.

In each problem, you may use any results from earlier in the round as if they were proven, even if your team couldn't solve them. All sub-problems of each problem use the same diagram and same labeled points.

Each problem's point value is bracketed in bold before the question. For example, [4] means a problem is worth 4 points. Every section and subsection's total point value is also bracketed in their corresponding titles.

Finally, credits to Evan Chen for the LaTeX package.

§1 Some useful properties

Definition 1.1. A set of points is concyclic if there is a circle such that all points in this set lie on the circle. A quadrilateral or other polygon is cyclic if the set of its vertices is concyclic.

Fact 1.2. $\angle A D B=\angle A C B$ if and only if quadrilateral $A B C D$ is cyclic.

Fact 1.3. $\angle A B C+\angle C D A=180^{\circ}$ if and only if quadrilateral $A B C D$ is cyclic.
Fact 1.4. $\angle E C D=\angle B A D$ if and only if quadrilateral $A B C D$ is cyclic. (This comes directly from the previous fact, since $\angle E C D+\angle D C B=\angle B A D+\angle D C B=180^{\circ}$.)

Theorem 1.5 (Power of a Point)

Circle ω with center O has radius r. A line l intersects ω at two points A and B. Let P be another point on l. Then, $P A \cdot P B=P O^{2}-r^{2}$.

§2 Introduction to Inversion [55]

In the Euclidean Plane, let O be the center of a circle ω with radius $r>0$. An inversion upon ω transforms each point P in the plane to a point P^{\prime}, such that $O P \cdot O P^{\prime}=r^{2}$ and both ray $\overrightarrow{O P}$ and ray $\overrightarrow{O P^{\prime}}$ are pointing in the same direction. Inversions have many interesting properties. Let's learn!

Let A be a point on ω and let B and C be points distinct from O such that neither B nor C is on the circle.

Fact 2.1. After an inversion upon ω, A is sent to itself.
Fact 2.2. After an inversion upon ω sends B to B^{\prime} and C to C^{\prime}, the 4 points B, C, B^{\prime}, and C^{\prime} are concyclic.

Fact 2.3. Segment $O A$ is tangent to the circumcircle of $\triangle A B B^{\prime}$.
Fact 2.4. Triangles $O B C$ and $O C^{\prime} B^{\prime}$ are similar.

§2.1 Properties of inverting self-invertable circles [25]

Let circle γ with positive radius have center O_{1}. It is given that γ 's inversion upon another circle ω, with center O, transforms γ to itself, but only a finite number of points on γ are sent to themselves via the inversion upon ω. The intersection of γ and ω consists of two points denoted as T_{1} and T_{2}.

Problem 2.5. [5] Prove that there exists a circle Ω that is sent to itself by an inversion upon a different circle Γ. Hint: Use Power of a Point.

Problem 2.6. [3] Let A be a point on γ. Prove that inverting upon ω sends A to the intersection of γ and $A O$, distinct from A.

Problem 2.7. [3] Prove that both $O T_{1}$ and $O T_{2}$ are tangent to γ. Hint: Use Power of a Point.

Problem 2.8. [4] Prove that both $O_{1} T_{1}$ and $O_{1} T_{2}$ are tangent to ω.
Problem 2.9. [5] Prove that the 4 points O, T_{1}, O_{1}, and T_{2} are concyclic.
Problem 2.10. [5] Prove that O_{1} is sent to a point O_{1}^{\prime} on $T_{1} T_{2}$ when inverted upon ω.

§2.2 Inverting circles passing through center of inversion [30]

It seems that when inverted upon ω, a circle passing through O becomes a line. Let's prove it! Using the previous section's definitions, let point D be on line $T_{1} T_{2}$ and D^{\prime} be the intersection of $O D$ and the circumcircle of $\triangle O T_{1} T_{2}$. (Remember that this circumcircle also passes through O_{1}.) Let X be the intersection of $O O_{1}$ and $T_{1} T_{2}$.

Problem 2.11. [4] Prove that $O_{1} D^{\prime} \perp O D$.
Problem 2.12. [5] Prove that the four points X, D, O_{1}, and D^{\prime} are concyclic.
Problem 2.13. [7] Prove that $O D \cdot O D^{\prime}=r^{2}$.
Problem 2.14. [9] Prove that the inverse of any line (not passing through O) about ω is a circle passing through O.

Problem 2.15. [5] Prove that the inverse of any circle passing through O about ω is a line. Hint: What happens if you invert about a circle twice?

§3 A Radical Axis Relation [45]

In acute $\triangle A B C$, let D be the foot of the altitude from A to $B C$. Let E be the foot of the altitude from D to $A B$ and let F be the foot of the altitude from D to $A C$. Let ω denote the circle with diameter $A D$ and let Ω denote the circumcircle of $\triangle A B C$. Denote $G \neq A$ as the second intersection of ω and Ω, and denote γ as the circle with center A and radius $A D$.

Problem 3.1. [3] Prove that E and F lie on ω.
Problem 3.2. [3] Find the points D, E, and F are sent to when inverted upon γ.
Problem 3.3. [4] Find the result when ω is inverted upon γ. Hint: Three points uniquely define a circle passing through them.

Problem 3.4. [3] Prove that when inverted upon γ, point G is sent to a point G^{\prime} on line $B C$.

Problem 3.5. [4] Prove that B, E, F, and C are concyclic.
Problem 3.6. [5] Find the result when line $E F$ is inverted upon γ.

Problem 3.7. [12] Let X and Y be where γ intersects Ω. Prove that both X and Y lie on line $E F$.

Problem 3.8. [5] Prove that G^{\prime} also lies on $E F$.
Problem 3.9. [5] Prove that the four points G, G^{\prime}, B, and E are concyclic.
Problem 3.10. [1] Prove that the four points G, G^{\prime}, C, and F are concyclic.

§4 A Challenge Problem [30]

Problem 4.1. [30] Obtuse $\triangle A B C$ with $\angle A B C>90^{\circ}$ has circumcenter O. Let $A C$ and $B O$ intersect at D, and let E be a point on $O D$ such that $O B^{2}=O D \cdot O E$. Prove that B is the incenter of $\triangle A C E$.

