
LMT Spring Online
May 9th – May 15th, 2020

Contest Instructions

Contest Window

The competition consists of a single round, consisting of 30 short answer problems. All answers are non-negative integers.
The problems will be made available on the homepage of the LMT website on Saturday, May 9th, at 12:00 pm. Teams will
have until Friday, May 15th, at 3:00 pm to submit their answers using the link provided by email.

Contest Rules

With the exception of standard four-function calculators, computational aids including but not limited to scientific and
graphing calculators, computer programs, and software such as Geogebra, Mathematica, and WolframAlpha, are not
allowed. Communication of any form between students on different teams is similarly prohibited, and any team caught
either giving or receiving an unfair advantage over other competitors will be disqualified. What constitutes cheating will be
up to the final discretion of the competition organizers, who reserve the right to disqualify any team suspected of violating
these rules.

Submitting Answers and Editing Team Information

During registration, your captain will be emailed a link to your team’s homepage. This is where you will be able to update
team information and answer submissions. We recommend that your captain distribute this link to the rest of the team
so that the entire team has access. Once on your team’s homepage, to enter or edit team answers, click the link next to
"Submission Link:". Team name, team member names, and grades may be edited through the homepage as well. Remember,
team member names must be the real names of the people on your team, and the team name must be appropriate.

Errata

If you believe there to be an error in one of the questions, email us at lmt@lhsmath.org with "Clarification" as the subject.
Clarifications for problems will be updated on the LMT homepage, if necessary.

Scoring

The score of your team is the number of questions you answer correctly. We will break ties by weighing the problems
based on how many teams solve them. Results will be posted shortly after the competition, where the top teams will be
recognized.
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1. Compute the smallest nonnegative integer that can be written as the sum of 2020 distinct integers.

Proposed by Janabel Xia

Solution. 0

There are an infinite number of possibilities for the set of 2020 distinct integers such that their sum is 0. For example,
take the subset S =−1010,−1009, . . . ,−2,−1,1,2, . . . ,1009,1010.

2. In tetrahedron ABC D, as shown below, compute the number of ways to start at A, walk along some path of edges,
and arrive back at A without walking over the same edge twice.

C

A

D
B

Proposed by Richard Chen

Solution. 12

Since we cannot walk over the same edge twice, we cannot only visit one vertex on triangle BC D, as that would
require traveling to and from triangle BC D along the same edge. Thus we can visit either 2 or 3 vertices on triangle
BC D. If we visit 2, there are 3 choices for the first vertex and 2 choices for the second, giving 3 ·2 = 6 ways to walk.
If we visit 3, there are 3 choices for the first vertex, 2 choices for the second, and 1 choice for the third, giving us
3 ·2 ·1 = 6 ways to walk. In total, there are 6+6 = 12 ways.

3. Let LMT represent a 3-digit positive integer where L and M are nonzero digits. Suppose that the 2-digit number MT
divides LMT . Compute the difference between the maximum and minimum possible values of LMT .

Proposed by Janabel Xia

Solution. 880

Note that if MT | LMT, then MT | 100L. For the minimizing LMT , we first minimize L as L = 1, which gives us
MT | 100 for a minimum value of MT = 10. For maximizing LMT , letting L = 9 gives us MT | 900 for a maximum
value of MT = 90. Then our desired difference is 990−110 = 880 .

4. Suppose there are n ordered pairs of positive integers (ai ,bi ) such that ai +bi = 2020 and ai bi is a multiple of 2020,
where 1 ≤ i ≤ n. Compute the sum

n∑
i=1

ai +bi .

Proposed by Alex Li

Solution. 2020

The prime factorization of 2020 is 22 ·5 ·101. Since 2020 | ai bi , at least one of either ai or bi must be a multiple of 2, 5,
and 101. Moreover, since ai +bi = 2020, both ai and bi must be multiples of 2, 5, and 101. It follows that 1010 | ai and
1010 | bi , and since ai +bi = 2020, the only ordered pair that satisfies these requirements is (a1,b1) = (1010,1010),
which gives a1 +b1 = 2020 .

2
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5. For a positive integer n, let D(n) be the value obtained by, starting from the left, alternating between adding and
subtracting the digits of n. For example, D(321) = 3−2+1 = 2, while D(40) = 4−0 = 4. Compute the value of the sum

100∑
n=1

D(n) =D(1)+D(2)+·· ·+D(100).

Proposed by Ezra Erives

Solution. 91

We start with one-digit numbers. The numbers one through nine contribute 1+2+ ·· ·+9 = 45 to our total. For
two-digit numbers, we notice that each digit is added ten times as a tens digit, and subtracted nine times as a
ones digit, and so our total increases by 1+2+·· ·+9 = 45. Finally, 100 adds one to this total, and so our answer is
45+45+1 = 91 .

6. Let 4ABC be a triangle such that AB = 6,BC = 8, and AC = 10. Let M be the midpoint of BC . Circleω passes through
A and is tangent to BC at M . Suppose ω intersects segments AB and AC again at points X and Y , respectively. If the
area of AX Y can be expressed as p

q where p, q are relatively prime integers, compute p +q .

Proposed by Janabel Xia

Solution. 61

Using Power of a Point, we have B X ·B A = B M 2 ⇒ B X = 42

6 = 8
3 and C Y ·C A = C M 2 ⇒ C Y = 42

10 = 8
5 . Then we can

calculate [AX Y ] = [ABC ] · AX
AB · AY AC = 24 · 10

18 · 42
50 = 56

5 , giving us 56+5 = 61 as our final answer.

7. The hexagonal pattern constructed below has two smaller hexagons per side and has a total of 30 edges. A similar
figure is constructed with 20 smaller hexagons per side. Compute the number of edges in this larger figure.

Proposed by Ezra Erives

Solution. 3540

Let H20,B20, and E20 be the total number of hexagons in the figure, the number of boundary edges in the figure, and
the total number of edges in the figure respectively. Then 6H20 = 2E20 −B20, and thus E20 = 6H20+B20

2 . We compute
that H20 = 20+21+·· ·+39+·· ·+21+20 = 1141, and B20 = 6 ·19 ·2+6 = 234, and so

E20 = 6 ·1141+234

2
= 3540 .

8. Let a,b be real numbers satisfying a2 +b2 = 3ab = 75 and a > b. Compute a3 −b3.

Proposed by Richard Chen

Solution. 500

From the given expressions regarding a and b, we see that a2 +b2 = 75 and ab = 25. Thus (a −b)2 = a2 +b2 −2ab =
75−2·25 = 25, so a−b = 5 since a > b. By difference of cubes factorization, a3−b3 = (a−b)(a2+ab+b2) = 5(75+25) =
500 .

3
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9. A function f (x) is such that for any integer x, f (x)+x f (2−x) = 6. Compute −2019 f (2020).

Proposed by Ezra Erives

Solution. 6

Notice first off that the only sensible values of x to plug in are 2020 and −2018. Plugging them in yields

f (2020)+2020 f (−2018) = 6

f (−2018)−2018 f (2020 = 6.

We have two equations in two unknowns. Subtracting the two equations gives 2019( f (2020)+ f (−2018)) = 0, and thus
f (−2018) =− f (2020). Plugging back into the first equation gives −2019 f (2020) = 6, and so the desired answer is 6 .

10. Three mutually externally tangent circles are internally tangent to a circle with radius 1. If two of the inner circles have

radius 1
3 , the largest possible radius of the third inner circle can be expressed in the form a+b

p
c

d where c is squarefree
and gcd(a,b,d) = 1. Find a +b + c +d .

Proposed by Alex Li

Solution. 23

O

AB

C

DE

F

G

Let O be the center of the circle with radius 1, A and B the centers of the circles with radii 1
3 , and C the center of the

circle with unknown radius r . We see that OF = OE = OD = 1, and since C F = r and BE = AD = 1
3 , we have OB =

O A = 2
3 and OC = 1− r . Focusing on triangle ABC , observe that triangle ABO is equilateral with AB = BO = AO = 2

3 .

This gives GO =
p

3
3 , so GC =

p
3

3 +1− r . Since AC = 1
3 + r , from the Pythagorean theorem on triangle AGC ,(1

3

)2 +
(p3

3
+1− r

)2 =
(1

3
+ r

)2
.

This simplifies to r = 2+p3
4+p3

= 5+2
p

3
13 , which gives 5+2+3+13 = 23 as the answer.

4
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11. Let set S contain all positive integers less than or equal to 2020 that can be written in the form n(n +1) for some
positive integer n. Compute the number of ordered pairs (a,b) such that a,b ∈S and a −b is a power of two.

Proposed by Alex Li

Solution. 5

Suppose a = m(m+1) = m2+m and b = n(n+1) = n2+n satisfy the desired condition; that is, a−b = m2−n2+m−n =
2k for some nonnegative integer k. Rearranging and factoring a difference of squares gives 2k = (m +n)(m −n)+
(m −n) = (m +n + 1)(m −n). It follows that both m +n + 1 and m −n must be powers of two. However, since
m+n+1 ≡ m−n+1 6≡ m−n (mod 2), we must either have m+n+1 = 1 or m−n = 1. Clearly the former cannot be true
since a and b must be positive; thus m = n+1. Substituting for n gives 2m = 2k ⇒ m = 2k−1, which means m must be
a power of two. We see that if m = 1, then n = 0 and b = 0, which is not in set S , and if m = 64, then a = 4160 > 2020
which is also not in the set. These bounds give us possible values of m as 2,4,8,16,32 with corresponding values of a
as 6,20,72,272,1056. The corresponding values for b are 2,12,56,240,992, which are all in set S . Thus there are 5
valid ordered pairs.

12. In the figure above, the large triangle and all four shaded triangles are equilateral. If the areas of triangles A, B , and C
are 1, 2, and 3, respectively, compute the smallest possible integer ratio between the area of the entire triangle to the
area of triangle D .

A B

C

D

Proposed by Alex Li

Solution. 5

Solution 1: Consider a situation where A, B , and C are much smaller than D , such as shown above. It is clear that the

D

desired ratio is very close to 4 in this case. However, since the sizes of A, B , and C are still finite, the actual ratio is
slightly larger than 4, no matter how small A, B , and C become. Thus the smallest integer ratio is 5 .

Solution 2: Let the side lengths of triangles A,B ,C ,D be a,b,c,d , respectively. One can deduce the side length of the
large equilateral triangle is a +b +c +2d by observing the side lengths of the equilateral triangles containing A and B ,
B and C , and C and D are a +b +d , b + c +d , and c +a +d , respectively. Thus the ratio of the side length of the large
equilateral triangle to that of triangle D is a+b+c+2d

d = 2+ a+b+c
d . The ratio of the areas is simply the square of the ratio

5
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of the side lengths, or
(
2+ a+b+c

d

)2
. One can observe that as d becomes much larger than a +b +c, the desired ratio

approaches 22 = 4. However, since this value can never be obtained since a +b + c > 0, the smallest possible integer
ratio is thus 5 .

13. In the game of Flow, a path is drawn through a 3×3 grid of squares obeying the following rules:

i A path is continuous with no breaks (it can be drawn without lifting a pencil).

ii A path that spans multiple squares can only be drawn between colored squares that share a side.

iii A path cannot go through a square more than once.

Compute the number of ways to color a positive number of squares on the grid such that a valid path can be drawn.
An example of one such coloring and a valid path is shown below.

Proposed by Alex Li

Solution. 171

We organize our cases by the size and shape of the coloring:

: There are clearly 9 such colorings.

: These colorings can be oriented horizontally or vertically. Each case gives 6 colorings, which gives a total of 12
colorings.

: Each such coloring corresponds to either a row or column, giving 6 colorings.

: These colorings occupy a 2×2 space with one of the four corners missing. Since there are 4 ways to choose a 2×2
space on the 3×3 board, there are 4 ·4 = 16 colorings.

: There are 4 ways to choose a 2×2 space on the 3×3 board, so there are 4 colorings.

: The coloring must be along an outside row/column. For each outside row/column, there are two ways to orient
the coloring. This gives 4 ·2 = 8 colorings.

: The long edge can either be along an outside row/column or an inside row/column. If it is along an outside
row/column, there are 2 ways to orient the coloring, and if its along an inside row/column, there are 4 ways to orient
the coloring. This gives 4 ·2+2 ·4 = 16 colorings.

: Each coloring from the previous case can be modified by adding a square to give a coloring from this case. There
are also 16 colorings.

: The corner piece must coincide with a corner of the grid. The 4 corners gives 4 colorings.

: Each coloring from the previous case can be modified by moving the corner piece to give a coloring from this
case. There are also 4 colorings.

: The coloring must be oriented along an inside row/column. Along each of them, there are two distinct
orientations of the coloring. This gives 2 ·2 = 4 colorings.

6
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: The coloring must be oriented along a row/column. If it is oriented along an interior row/column there are two
possible orientations. This gives 4+4 = 8 colorings.

At this point, it is easier to count the uncolored squares rather than the colored squares. Note that a different location
on the board could affect whether or not a valid path could be formed.

If the path has length 9, every square is colored. There is only 1 coloring.

If the path has length 8, the uncolored square must be the center or a corner square. This gives 5 colorings.

If the path has length 7, the two uncolored squares can be next to each other. This gives 12 colorings. If they are not,
they can be at two corners, diagonally adjacent, or a knights move away from each other. The first of these gives
6 colorings; 4 for adjacent corners and 2 for opposite corners. If they are diagonally adjacent, one must be at the
center, and the other can be at one of 4 corners, giving 4 colorings. If they are a knights move away, one uncolored
square must be a corner square, and the other can be one of two edge squares. Since there are 4 corners, this gives 8
colorings, giving 12+6+4+8 = 30 total colorings.

If the path has length 6, the three uncolored squares can be next to each other. This gives 4 colorings. The three
uncolored squares can also form an L-shape, given one of the two edge squares occupies the center square. This
gives 8 cases, two for each corner. If two are next to each other and one is not, there are two such arrangements, each
of which has 8 colorings: the two adjacent uncolored squares must lie on a side, each of which has two orientations.
This gives 4+8+8+8 = 28 total colorings.

Summing all these cases yields a total of 171 .

14. Let 4ABC be a triangle such that AB = 40 and AC = 30. Points X and Y are on the segment AB and BC , respectively
such that AX : B X = 3 : 2 and BY : C Y = 1 : 4. Given that X Y = 12, the area of 4ABC can be written as a

p
b where a

and b are positive integers and b is squarefree. Compute a +b.

Proposed by Sooyoung Choi

Solution. 480

Solution 1: Our motivation in any Geometry problems for LMT is that we never bash.

Notice that the length of X Y is 12 which is 2
5 of AC . Let Z be the point on BC such that BY = Y Z . Notice that

X Z = 12 since X Z is parallel to AC . Then 4X Y Z is isosceles. Then, we drop the altitude from X to BC . Let BY = x.
By Pythagorean theorem, we have 162 − ( 3

2 x)2 = 122 − ( 1
2 x)2. Solving for x gives x = 2

p
14. Then, the area of 4X Y Z is

2
p

455 and using the ratio, the area of 4ABC equals to 25
p

455 so our answer is 455+25 = 480 .

Solution 2: Although our motivation is no bash, we still present a trashy bashy solution.

We use the Law of Cosines. We have B X = 2
5 AB = 16, and let BY = n, BC = 5n. Then from the Law of Cosines on

4B X Y and4B AC respectively, we have X Y 2 = 162+n2−2(16)(n)(cosB) = 122 and AC 2 = 402+(5n)2−2(40)(5n)(cosB) =
302. Multiplying the first equation by 52 and the second by 2 and subtracting lets us solve for n = 2

p
14. Substitut-

ing this into either equation lets us solve for cosB = 3
p

14
16 . Using the relation sin2(x)+cos2(x) = 1 for all x, we get

sinB =
p

130
16 . Finally, [ABC ] = 1

2 (B A)(BC )(sinB) = 25
p

455, so a +b = 25+455 = 480 is our desired answer.

15. Let φ(k) denote the number of positive integers less than or equal to k that are relatively prime to k. For example,
φ(2) = 1 and φ(10) = 4. Compute the number of positive integers n ≤ 2020 such that φ(n2) = 2φ(n)2.

Proposed by Janabel Xia

Solution. 10

7
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Let n be a number satisfying this equation, and let its the prime factorization be pk1
1 ·pk2

2 · · · · ·pki
i .

Claim: φ(n) =∏i
j=1(p j −1)

(
p

k j −1
j

)
Proof: We can look at each p j individually, since a number is relatively prime if it shares no prime divisors. The

probability any chosen number a < n is not divisible by p j for each j is P (p j - a) = pi−1
pi

, given that pi | n, and
divisibility by each pi of a random chosen number is independent. Thus, we have

φ(n) = nP (p1, p2, . . . , pi - a) = n
i∏

j=1
P (p j - a) = n

i∏
j=1

p j −1

p j
=

i∏
j=1

(p j −1)
(
p

k j −1
j

)
.

Now we have

φ(n2) =
i∏

j=1
(p j −1)

(
p

2k j −1
j

)
and

2φ(n)2 = 2
( i∏

j=1
(p j −1)(p

k j −1
j

)2
= 2

i∏
j=1

(p j −1)2(p
2k j −2
j

)
are equal, and canceling out (lots!) of terms gives us

1

2
=

i∏
j=1

p j −1

p j
.

Note that pi cannot be canceled from the denominator of the RHS, as it is the largest prime divisor, unless pi = 2
already. Thus, n ≤ 2020 is be a power of 2 greater than 1, giving us 10 total possibilities.

16. For non-negative integer n, the function f is given by

f (x) =
{

x
2 if n is even

x −1 if n is odd.

Furthermore, let h(n) be the smallest k for which f k (n) = 0. Compute

1024∑
n=1

h(n).

Proposed by Ezra Erives

Solution. 13325

This problem becomes easier by considering the numbers in binary. Dividing by two removes a zero from the end of
a binary string, if that string initially ended with a zero (the string was an even number). Subtracting one removes a
one from the end of a binary string (the string was an odd number). These two observations together are enough
to imply that h(n) is equal to the number of ones in the binary representation of n plus the number of digits in the
binary representation minus one. In this sense, h(n) can be thought of as h(n) = t(n)+d(n)−1, where t(n) is the
number of ones in the binary representation of n and d(n) is the number of digits in the binary representation of n.
We perform the summations separately. We have

1024∑
n=1

t (n) = 1+
10∑

k=1
k

(
10

k

)
= 5121

and
1024∑
n=1

d(n) = 11+
10∑

k=1
k2k−1 = 9228.

It follows that our answer is 5121+9228−1024 = 13325 .

8
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17. Let ABC be a triangle such that AB = 26, AC = 30, and BC = 28. Let C ′ and B ′ be the reflections of the circumcenter O
over AB and AC , respectively. The length of the portion of line segment B ′C ′ inside triangle ABC can be written as p

q ,
where p, q are relatively prime positive integers. Compute p +q .

Proposed by Richard Chen

Solution. 85

We take advantage of all of the similar triangles involved in the picture.

C

A

B

B’

O

C’

MA

MC MB

NC NB

Notice that 4OMC MB ∼4OC ′B ′. Further note that 4ANC NB ∼4AMC MB ∼4ABC . Comparing the heights of
these these triangles will do.

We have that the length of the height from A to BC is 24(notice the 26−24−10 and 30−24−18 right triangles formed!)
and that the length of the height from A to MC MB is 24÷2 = 12. We now want to find the height from A to NC NB ,
which is 12 − (height from C ′B ′ to MC MB ). Notice that the height from C ′B ′ to MC MB is equal to the height from O
to MC MB , by similar triangles 4OMC MB and 4OC ′B ′. Thus, the height from A to MC MB is equal in length to 12 −
(height from O to MC MB ), which is equal in length to OMA .

To find the length of OMA , we look at triangle OMAB ; this is a right triangle with legs B MA = 14 and OMA and
hypotenuse equal to the circumradius of the triangle. Using the circumradius formula, R = abc

4[area] =⇒ R = 65
4 , we

then finish with Pythagorean theorem to determine that OMA is 33
4 , so the height from A to MC MB is 33

4 .

We now have similar triangles; the similar triangle we are looking for, ANC NB , can be compared to ABC using height;
we get that the scale factor here is 33

4 ÷24 = 11
32 , so NC NB = 11

32 ·BC = 11
32 ·28 = 77

8 , for a final answer of 77+8 = 85 .

18. Compute the maximum integer value of k such that 2k divides 32n+3 +40n −27 for any positive integer n.

Proposed by Sooyoung Choi

Solution. 6

Our strategy is to first try to factor the expression. Seeing the 3 in the exponent of the power of 3 and the constant 27
term, we group them together to get the following factorization:

32n+3 +40n −27

= 33(32n −1)+40n

= 33(9n −1)+40n

= 33(9−1)(9n−1 +9n−2 +·· ·+1)+40n

= 8(33(9n−1 +9n−2 +·· ·+1)+5n),

9
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which gives us a factor of 8 = 23 already. We also have

33(9n−1 +9n−2 +·· ·+1)+5n ≡ 27n +5n ≡ 32n ≡ 0 (mod 8),

which gives us another factor of 23. Finally, plugging in n = 2 gives us 33(9n−1 +9n−2 +·· ·+1)+5n = 280, which has
exactly 3 factors of 2. Therefore, our answer is k = 3+3 = 6

19. Let ABC be a triangle such that such that AB = 14,BC = 13, and AC = 15. Let X be a point inside triangle ABC .
Compute the minimum possible value of (

p
2AX +B X +C X )2.

Proposed by Sooyoung Choi

Solution. 757

Seeing the
p

2 in the expression we wish to minimize, we can try interpreting this as the leg of a 45−45−90 triangle.
To easily create such a triangle, we rotate 4ABC 90◦ clockwise about A to triangle AB ′C ′, further letting the image of
point X be X ′. Then we have (

p
2AX +B X +C X )2 = (X ′X +B ′X ′+XC )2, which is minimized at B ′C 2 when B ′, X ′, X ,C

are collinear. To calculate B ′C 2 easily, let the foot of the C−altitude be D. Then both B ′A ⊥ AB and C D ⊥ AB , so
Pythagorean gives us B ′C 2 = (B ′A+DC )2 + AD2 = 262 +92 = 757 .

20. Let c1 < c2 < c3 be the three smallest positive integer values of c such that the distance between the parabola
y = x2 +2020 and the line y = cx is a rational multiple of

p
2. Compute c1 + c2 + c3.

Proposed by Ezra Erives and Nathan Ramesh

Solution. 49

Let the line y = cx +d be tangent to the parabola y = x2 +2020. It follows that x2 +2020 = cx +d must have one

solution, which is the case when the discriminant c2 −4(2020−d) = 0. This gives d = 2020− c2

4 , which is also the
vertical distance between the lines y = cx and y = cx +d . Since the line has slope c, the horizontal distance between

the two lines is d
c . Similar triangles gives the shortest distance between the two lines as

d2
c

d
√

1+ 1
c2

= dp
1+c2

. Since

this expression is a rational multiple of
p

2, it must be that dp
1+c2

= r
p

2 for some positive rational r . Rearranging

and squaring gives 2c2 +2 = ( d
r

)2, and since c is an integer, the quotient d
r = n for some positive integer n. (Note

the dependence of d upon c can be neglected, since the rationality of d is the only important detail for solving the
problem. The equation will be made true by the choice for r .) Equivalently, 2c2 +2 must be a perfect square, and
checking positive integers gives 1,7, and 41 as the three smallest values for which this is true. It follows that the
answer is 1+7+41 = 49 .

21. Let {an} be the sequence such that a0 = 2019 and

an =−2020

n

n−1∑
k=0

ak .

Compute the last three digits of
∑2020

n=1 2020n ann.

Proposed by Sooyoung Choi

Solution. 400

Notice that we have nan =−2020
∑n−1

k=0 ak and (n −1)an−1 =−2020
∑n−2

k=0 ak . Subtracting the two equations gives us

an =− (2020− (n −1))

n
an−1.

10
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Now using the above equation repeatedly and the fact that a0 = 2019, we get an = (−1)n
(2020

n

)
. Then, n ·2020n ·an =

2019 · (−2020)n · (2020
n

) ·n = 2019 · (−2020)n · 2020
n ·n · (2019

n−1

)= 2019 ·2020 · (−2020) · (−2020)n−1
(2019

n−1

)
.

Hence,
∑2020

n=1 n ·2020n ·an = 2019 ·2020 ·(−2020)
∑

n=1 2020(−2020)n−1
(2019

n−1

)= 2019 ·2020 ·(−2020)
∑2019

n=0 (−2020)n
(2019

n

)
= 2019 ·2020 · (−2020) · (1−2020)2019 = 20192020 ·20202, finally giving us a remainder of 400 when divided by 1000.

22. The numbers one through eight are written, in that order, on a chalkboard. A mysterious higher power in possession
of both an eraser and a piece of chalk chooses three distinct numbers x, y , and z on the board, and does the following.
First, x is erased and replaced with y , after which y is erased and replaced with z, and finally z is erased and replaced
with x. The higher power repeats this process some finite number of times. For example, if (x, y, z) = (2,4,5) is chosen,
followed by (x, y, z) = (1,4,3), the board would change in the following manner:

12345678 → 14352678 → 43152678

Compute the number of possible final orderings of the eight numbers.

Proposed by Ezra Erives

Solution. 20160

We define a transposition to be the action of swapping two elements of a permutation. For example, the trasposition
corresponding to swapping the second and third elements, and referred to as (23), is shown below.

12345678 → 13245678

Any permutation can be expressed as a product of some number of permutations, and can be done so in more than
one way. It is not hard to show however that the parity of the number of transpositions needed to express a given
permutation is invariant.

We claim that the set of possible final permutations is precisely the set of permutations that require an even number
of permutations and which we will henceforth refer to as even permutations.

The mysterious higher power is only able to act on the permutation by cycling triplets of indices. The important
observation is that cycling the elements at positions x, y, z (that is, where x goes to y goes to z goes to x) can be
written as the product of transpositions (x y) and (y z). In other words, we can obtain the desired cycling of x, y, z by
first swapping x and y , and then swapping y and z. It follows that any possible final permutation must be even.

We now show that every even permutation is achievable. Note that, for distinct indices a,b,c,d , the product (ab)(cd)
of transpositions (first swap c and d , and then swap a and b) can be achieved by the higher power by first cycling
b → c → d and then cycling a → b → c . Similar "factorizations" exist when a,b,c,d are not all distinct. Since any even
permutation can be written as the product of an even number of transpositions, and each pair of transpositions
can be expressed in terms of the mysterious higher powers "3-cycles", we conclude that all even permutations are
achievable.

Consider some permutation. If this permutation is even, it can be achieved. If this permutation is not even (odd), the
permutation obtained by swapping the last two elements is an even permutation. Thus, the entire set of permutations
can be broken into 8!

2 = 20160 pairs of permutations, with each pair containing exactly one even permutation.

23. Let 4ABC be a triangle such that AB = AC = 40 and BC = 79. Let X and Y be the points on segments AB and AC
such that AX = 5, AY = 25. Given that P is the intersection of lines X Y and BC , compute P X ·PY −PB ·PC .

Proposed by Sooyoung Choi

Solution. 525

If you bashed this problem, we are disappointed. As for the solution, we are motivated to try to construct similar
triangles from the expression given. Let point Q be on ray C B such that ∠XQP =∠C Y P ⇒4PC Y ∼4P XQ. This

11
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gives us P X ·PY = PQ ·PC , so P X ·PY −PB ·PC = PQ ·PC−PB ·PC = BQ ·PC . However, we also have ∠X BQ =∠PC Y
since 4ABC is isosceles, so 4PC Y ∼4X BQ. Finally, similar triangle ratios gives us PC

C Y = X B
BQ ⇒ BQ ·PC =C Y ·X B =

15 ·35 = 525 .

Remark from the author: As can be seen from our solution, the desired expression P X ·PY −PB ·PC is constant
and the length BC = 79 is irrelevant. Also, this problem is exclusively written for people who have May 25th as their
birthday.

24. Let a, b, and c be real angles such that

3sin a +4sinb +5sinc = 0

3cos a +4cosb +5cosc = 0.

The maximum value of the expression sinb sinc
sin2 a

can be expressed as p
q for relatively prime p, q . Compute p +q .

Proposed by Alex Li

Solution. 89

Multiplying the first equation by i and adding it to the second gives 3cis a +4cisb +5cisc = 0. Geometrically, the
sum indicates that the complex numbers 3cis a, 4cisb, and 5cisc must form the sides of a 3−4−5 right triangle,
with angles b = a+90 and c = 180+ tan−1( 4

3 )+a. Since sinb = sin(a+90) = cos a and sinc = sin
(
180+ tan−1( 4

3 )+a
)=

−sin
(

tan−1( 4
3 )+ a

) = −
(

sin
(

tan−1( 4
3 )

)
cos(a)− cos

(
tan−1( 4

3 )
)

sin(a)
)
= −( 4

5 cos a + 3
5 sin a

)
, the desired expression

can be written as −( 4
5 cot2 a + 3

5 cot a
)
. This expression is a quadratic in cot a and can be expressed equivalently as

− 4
5

(
cot a + 3

8

)2 + 9
80 . It follows that the maximum value is 9

80 , achieved when cot a =− 3
8 , giving the desired sum as

89 .

25. Let 4ABC be a triangle such that AB = 5, AC = 8, and ∠B AC = 60◦. Let Γ denote the circumcircle of ABC , and let I
and O denote the incenter and circumcenter of 4ABC , respectively. Let P be the intersection of ray IO with Γ, and

let X be the intersection of ray B I with Γ. If the area of quadrilateral X IC P can be expressed as a
p

b+c
p

d
e , where a

and d are squarefree positive integers and gcd(a,c,e) = 1, compute a +b + c +d +e.

Proposed by Janabel Xia

Solution. 41

The key to solving this problem is to notice that X IC is an equilateral triangle symmetric about IO. Our first useful
claim is that B , I ,O,C are cyclic.

Proof: We have ∠B IC = 180◦−(∠I BC +∠IC B) = 180◦− 1
2 (∠B+∠C ) = 180◦− 1

2 (180◦−∠A) = 120◦ and ∠BOC = 2∠A =
120◦, so ∠B IC =∠BOC ⇒ B , I ,O,C concyclic.

Now we can angle chase as follows: ∠OIC =∠OBC = 30◦ (since OB = OC = R circumradius) and ∠OI X =
180◦−∠OI B =∠OC B = 30◦. Therefore, ∠X IC = 60◦ and X IC is symmetric about the diameter line IO ⇒ X I = XC ⇒
X IC is equilateral and XC ⊥ IQ. Then, we can find [X ICQ] = 1

2 ·XC · IQ.

First, we have BC 2 = AB 2 + AC 2 −2 · AB · AC · cos(A) = 49 ⇒ BC = 7 from Law of Cosines. To find XC = IC ,
let the foot of the altitude from I to BC be D. Then I D = r = [ABC ]/s = ·5 ·8 · sin(60◦)/(5+8+7) =p

3. To compute
C D, we can use C D = 1

2 (BC + AC − AB) = 5 (consider the incircle and its points of tangency with the triangle). Now

Pythagorean gives us C I =
p

I D2 +C D2 = 2
p

7.

To compute IQ = IO +OQ = IO +R, we first have R = [ABC ]/(4abc) = 7p
3

. To compute IO, let the foot of

the altitude from O to BC is M , the midpoint of BC , and OM = 1
2 ·R = 73

6 . Then IOMD is a right trapezoid and

IO2 = (OM− I D)2+DM 2 = (p3
6

)2+( 3
2

)2 = 7
3 ⇒ IO =

p
7p
3

. Then finally we have [X ICQ] = 1
2 ·2

p
7·( 7p

3
+

p
7p
3

)= 7
p

21+7
p

3
3 ,

giving us a +b + c +d +e = 41 .

12
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26. A magic 3×5 board can toggle its cells between black and white. Define a pattern to be an assignment of black or
white to each of the board’s 15 cells (so there are 215 patterns total). Every day after Day 1, at the beginning of the
day, the board gets bored with its black-white pattern and makes a new one. However, the board always wants to be
unique and will die if any two of its patterns are less than 3 cells different from each other. Furthermore, the board
dies if it becomes all white. If the board begins with all cells black on Day 1, compute the maximum number of days it
can stay alive.

Proposed by Janabel Xia

Solution. 2047

To simplify, let’s treat the 3×5 board as a vector in {0,1}15, where 0 is black and 1 is white.

Define the distance between two vectors to be the number of entries that differ. Define a used vector to be a
vector corresponding to a pattern the board actually makes. Our problem requires a minimum distance of 3 between
any two used vectors. This motivates us to consider sets consisting of a vector v itself and the set of vectors of
distance 1 from v (you can picture this as the region enclosed by a “radius” of 1 from v), since ensuring no two used
vectors overlap in these sets is both necessary and sufficient for the problem’s distance 3 condition. We have 215

possible vectors and each used vector eliminates 1+15 = 16 total vectors (including itself), so the board lives at most
215/16 = 2048 days by creating a perfect partitioning of the 215 vectors total.

To prove that on at least one of the 2048 days the board must be all white given that it starts all black on Day 1,
we first define the useful notion of the weight of a vector to be the number of 1s it has. Let w(i ) denote the set of
vectors with weight i . We know that to achieve 2048 days, all the used vectors must eliminate each of 215 possible
vectors exactly once.

We can calculate in a process as follows: Day 1 (the 0 vector) eliminates all vectors in w(1), and furthermore
no vectors in w(2) can be used, so all vectors in w(2) must be eliminated by vectors in w(3). Each vector in w(3)

eliminates 3 vectors in w(2), so we must use
(15

2

)
3 = 35 vectors in w(3). Note that each w(3) vector eliminates 15−3 = 12

vectors in w(4), which we must keep track of. Then we still have
(15

3

)−35 = 420 unused vectors in w(3) that must
be eliminated entirely by vectors in w(4) (since there can’t be any used vectors in w(2)). If we continue this fairly
straightforward process and keep track of eliminating each vector exactly once, we find that there must be a used
vector in w(15), the all white pattern, so 2048−1 = 2047 is our final answer.

27. Let Sn =∑n
k=1(k5 +k7). Let the prime factorization of gcd(S2020,S6060) be pk1

1 ·pk2
2 · · ·pki

i . Compute p1 +p2 +·· ·+pi +
k1 +k2 +·· ·+ki .

Proposed by Sooyoung Choi

Solution. 121

We claim that Sn = 2( n(n+1)
2 )4. We use following algebraic manipulation:

n∑
k=1

(k5 +k7) = 1

8

n∑
k=1

4k3(2k4 +2k2) =
n∑

k=1
{(k2 +k)2 − (k2 −k)2}{(k2 +k)2 + (k2 −k)2}

= 1

8

n∑
k=1

[(k2 +k)4 − (k2 −k)4] = 2
n∑

k=1
[(

k(k +1)

2
)4 − (

(k −1)k

2
)4] = 2(

n(n +1)

2
)4

From the expression, we can deduce that gcd(Sn ,S3n) = 1
8 n4 when n ≡ 4 (mod 6). Therefore, our gcd is 20204

8 =
2 ·10104 = 25 ·54 ·1014, giving 2+5+101+5+4+4 = 121 as our answer.

28. A particular country has seven distinct cities, conveniently named C1,C2, . . . ,C7. Between each pair of cities, a direc-
tion is chosen, and a one-way road is constructed in that direction connecting the two cities. After the construction is
complete, it is found that any city is reachable from any other city, that is, for distinct 1 ≤ i , j ≤ 7, there is a path of

13
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C1

C2 C3

C1

C2 C3

one-way roads leading from Ci to C j . Compute the number of ways the roads could have been configured. Pictured
on the following page are the possible configurations possible in a country with three cities, if every city is reachable
from every other city.

Proposed by Ezra Erives

Solution. 1677488

We construct a general recursion for n > 1 cities. Let the (directed) graph of the n cities be G , which is assumed to
have an edge between every pair of vertices, and call a subset S of the vertices good if there is no edge from S to G/S
and the induced subgraph of G corresponding to S is strongly connected.

We claim that if G is not strongly connected, there there exists some non-empty good subset of G . To see that
this is true, note that if G is not strongly connected, there exist a,b ∈G for which there exists a path from a to b, but
no such path from b to a. Let Sb be the set of vertices reachable from b, including b. If b is reachable from every
vertex of Sb , then the induced subgraph corresponding to Sb is strongly connected. Note that any edge from Sb to
G/Sb would contradict Sb containing every vertex reachable from b, and thus Sb is good. Else, if Sb is not strongly
connected, then there exists some b′ ∈ Sb for which b is not reachable from b′. Set b = b′ and repeat the process. As
the size of G is finite, the process must eventually halt, at which point we will obtain our good subset.

It follows from our claim that either G is strongly connected, or that there exists some good subset of the
vertices. Suppose there were multiple such good subsets for some G . Then these two subsets must be disjoint, and a
contradiction would follow by considering the edge between them. Thus there is always at most one good subset.

Let Tn be the number of strongly connected directed graphs with an edge between every pair of vertices
(essentially the problem statement, but for general n). To construct a recursion for Tn , we note that if S is some good
subset of G of size k, then the induced subgraph corresponding to S satisfies the problem constraints for n = k. We
then calculate the complement of Tn by enumerating over the size of the good subset in the following manner:

2
(n

2

)
−Tn =

n−1∑
k=1

(
n

k

)
Tk 2

(n−k
2

)
.

Starting small, it’s easy to see that T1 = 1, T2 = 0, and T3 = 2 (as shown in the example). With the help of a
standard four-function calculator, or with sufficient computational fortitude, one will eventually arrive at the correct
answer of T7 = 1677488 .

Note: This problem is more formally known as asking for the number of strongly connected labeled tournaments on n
nodes. If you’re curious, check out OEIS entry A054946.

29. Let F be the set of polynomials f (x) with integer coefficients for which there exists an integer root of the equation
f (x) = 1. For all k > 1, let mk be the smallest integer greater than one for which there exists f (x) ∈ F such that
f (x) = mk has exactly k distinct integer roots. If the value of

p
m2021 −m2020 can be written as m

p
n for positive

integers m,n where n is squarefree, compute the largest integer value of k such that 2k divides m
n .

Proposed by Sooyoung Choi

Solution. 1002

Assume that for some polynomial f ∈ F , f (x) = mk has k distinct integer roots β1,β2, · · · ,βk . Then, there exists a
polynomial g (x) with integer coefficients such that f (x)−mk = (x −β1)(x −β2) · · · (x −βk )g (x). There also exists an
integer α such that f (α) = 1, since f ∈F .

14
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If we plug α in the above equation with g (x) and take the absolute value, we have

mk −1 = |α−β1|× |α−β2|× · · ·× |α−βk |× |g (α)|
Now from the problem condition, we know that α−βi are distinct and nonzero since mk > 1. Therefore, to minimize
mk , we have |g (α)| = 1 and |α−βi will take the smallest k distinct nonzero integers. Thus, when k is even, we have

mk = [

(
k

2

)
!]2 +1

and when k is odd, we have

mk =
(

k −1

2

)
!

(
k +1

2

)
!+1.

Hence, m2021 −m2020 = 1011!1010!−1010!1010! = 1010 ·1010!2. Computing gives us 1002 as our final answer.

30. Let ABC D be a cyclic quadrilateral such that the ratio of its diagonals is AC : BD = 7 : 5. Let E and F be the intersections
of lines AB and C D and lines BC and AD, respectively. Let L and M be the midpoints of diagonals AC and BD,
respectively. Given that EF = 2020, the length of LM can be written as p

q where p, q are relatively prime positive
integers. Compute p +q.

Proposed by Sooyoung Choi

Solution. 4855

We claim that the following equation is true:

LM

EF
= 1

2

(
AC

BD
− BD

AC

)

We will use vectors to prove the result. Let i , j be the unit vector from origin E and direction
−→
EB ,

−→
EC , respectively.

Since ABC D is cyclic, we have EB ·E A = EC ·ED. Thus, we can find some constant µ>λ and k such that

−→
EB = i ,

−→
E A = kµi ,

−→
EC =µ j ,

−−→
ED = kλ j .

Then,
−−→
LM =−−→

E M −−→
EL = 1

2
[(
−→
EB +−−→

ED)− (
−→
E A+−→

EC )] = 1

2
[(λ−kµ)i + (kλ−µ) j ].

Also, we have

−→
AC 2 = |−→EC −−→

E A|2 =µ2| j −ki |2 =µ2(k2 +1−2k cosα)
−−→
BD2 = |−−→ED −−→

EB |2 =λ2|k j − i |2 =λ2(k2 +1−2k cosα)

where α is the angle formed by lines EB and EC .

On the other hand, since F lies on both AD and BC , we can write
−→
EF in the following two ways for some scalars t , s:

−→
EF = t

−→
E A+ (1− t )

−−→
ED = tkµi + (1− t )kλ j ,

−→
EF = s

−→
EB + (1− s)

−→
EC = sλi + (1− s)µ j .

Hence, we have s = tkµ and (1− s)µ= (1− t )kµ. Solving this system of equations, we get s = µ(µ−kλ)
µ2−λ2 . Plugging s back

into the expression of
−→
EF , we have

−→
EF = λµ

µ2 −λ2 [(µ−kλ)i + (kµ−λ) j ]

15
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Finally, we see that

LM 2

EF 2 = 1

4

(
µ2 −λ2

λµ

)2

= 1

4

(
µ

λ
− λ

µ

)2

= 1

4

(
AC

BD
− BD

AC

)2

and square rooting both sides proves our claim.

Using our claim, we have LM = EF · 1
2 ( 7

5 − 5
7 ) = 4848

7 , giving us 4848+7 = 4855 as our final answer.
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