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Potpourri [70]

1. Points P1,P2,P3, · · · ,Pn lie on a plane such that PaPb = 1,Pc Pd = 2, and Pe P f = 2018 for not necessarily distinct
indices a,b,c,d ,e, f ∈ {1,2, · · · ,n}. Find the minimum possible value of n.

2. Find the coefficient of the x2 y4 term in the expansion of (3x +2y)6.

3. Find the number of positive integers n < 1000 such that n is a multiple of 27 and the digit sum of n is a multiple of 11.

4. How many times do the minute hand and hour hand of a 12-hour analog clock overlap in a 366-day leap year?

5. Find the number of ordered triples of integers (a,b,c) such that (a +b)(b + c)(c +a) = 2018.

6. Let S denote the set of the first 2018 positive integers. Call the score of a subset the sum of its maximal element and its
minimal element. Find the sum of score(x) over all subsets s ∈ S

7. How many ordered pairs of integers (a,b) exist such that 1 ≤ a,b ≤ 20 and aa divides bb?

8. Let f be a function such that for every non-negative integer p, f (p) equals the number of ordered pairs of positive
integers (a,n) such that an = ap ·n. Find

2018∑
p=0

f (p).

9. A point P is randomly chosen inside a regular octagon A1 A2 A3 A4 A5 A6 A7 A8. What is the probability that the

projections of P onto the lines
←−−−→
Ai Ai+1 for i = 1,2, · · · ,8 lie on the segments Ai Ai+1 for i = 1,2, · · · ,8 (where indices are

taken mod 8)?

10. A person keeps flipping an unfair coin until it flips 3 tails in a row. The probability of it landing on heads is 2
3 and the

probability it lands on tails is 1
3 . What is the expected value of the number of the times the coin flips?
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Long Answer [130]

Group theory is a rich and diverse theory of mathematics that is the fundamental building block of many other branches
of math such as abstract algebra. It has countless applications in physics or in the real world as well: for example, the
symmetries of a space can be modelled using group theory, and the Rubik’s cube can easily be modelled (and solved) in
terms of group theory. This set of problems will introduce groups and will prove a fact about certain sub-types of groups.

A group G is a set of elements closed under an operation · such that the following hold for all a,b,c ∈G :

1. The operation is associative: (a ·b) · c = a · (b · c) for all a,b,c ∈G

2. G contains an identity: an element e, such that a ·e = e ·a = a for all a ∈G

3. Every element a has an inverse: that is, an element b = a−1 in G such that a ·b = b ·a = e.

For example, the integers Z under the operation + forms a group. The identity is e = 0. The inverse of a is −a. Clearly
addition is associative in the integers.

1. [2] Consider the integers Z under multiplication ×. Does this form a group? Why or why not?

Starting from now, we will omit the · between elements, and refer to expressions such as a ·b simply as ab.

2. [6] Show that in a group, there can only be one identity. That is, if e and e ′ are two identities, then e = e ′.

One should be careful to note that the operation of a group is not always commutative. That is, we will not always have
ab = ba.

3. [3] Let x, y, z, w ∈G where the operation of G is not commutative. Express y in terms of x, z, w and their inverses,
given that x y z−1w = e. Be careful with how you multiply!

We say a group is cyclic if there exists an element g ∈G such that every element a ∈G is equal to g k = g · g · · · · · g︸ ︷︷ ︸
k times

for

some integer k. That is, G = {g k : k ∈Z}. We say G is generated by g .

The integers Z under addition form a cyclic group, as one can express every integer as some (possibly negative) amount of
applications of addition to the element 1.

4. [4] Consider the group with elements 1,2,3,4 with operation as integer multiplication modulo 5. For example, we
have 2 ·3 = 1. Show that this group is cyclic.

A subset H of a group G is a subgroup if it satisfies the following properties (using the same operation descended from
G):

1. If a,b are in H , then ab is in H .

2. The identity e in G is also in H .

3. If a is in H , then it has an inverse a−1 in H that is the same as defined above.

For example, the set H = 2Z, all even integers, forms a subgroup of G =Z, the integers with the operation of addition.

From here on out, we will only consider groups with finitely many elements. The case of infinite groups has a similar theory
but is slightly more complicated. We introduce our first theorem: We will prove that every subgroup H of a cyclic group G is
cyclic.

Suppose G is generated by g . To begin, we define the integer n to be the smallest positive integer such that g n is in H .

5. [9] Consider an arbitrary element h in H . Show that h is an integer power of g n . Hint: Let h = g a .

6. [1] Conclude that H is cyclic.
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We define the order of an element x ∈G to be the smallest positive integer n such that xn = e.

For example, consider the complex numbers without 0, written C×, as a group under the operation of multiplication. Then
i has order 4, as i 4 = 1.

7. [5] Let G be a finite group. Show that the order of every element is finite.

8. [7] Let x ∈G have order n. Show that xk = e if and only if k is divisible by n.

Let x ∈G have order n and let k be an arbitrary positive integer. The following problems will demonstrate the following
theorem: The order of xk is n/gcd(k,n).

9. [4] Let t be the order of xk . Show that kt = nm for some integer m.

10. [9] Define n′ and k ′ to be integers such that n = gcd(n,k)n′ and k = gcd(n,k)k ′. Show that n′ ≤ t .

11. [8] Show that (xk )n′ = e and conclude that t ≤ n′. Finish the proof of the theorem.

We now return our attention to cyclic groups.

12. [11] Show that the size (number of elements) of each subgroup H of a cyclic group G divides the size of G .

13. [3] Let |G| denote the size (number of elements) of the group G . Show that for any element g ∈G , it is true that g |G| = e.

14. [6] Let d divide the size of a cyclic group G . Show that there exists a subgroup H of G that has size d .

We conclude our classification with the following theorem: Let G have size m, and let g generate G . Then the subgroup
generated by g k is the same as the subgroup generated by g gcd(m,k).

To prove this, we will show that g k is a power of g gcd(m,k) and that g gcd(m,k) is a power of g k .

15. [2] Show that g k is a power of g gcd(m,k).

16. [14] Bezout’s identity states that
gcd(k,m) = kx +my

for some integers x, y. Finish proving the theorem. Hint: Use this to express g gcd(k,m) as a power of g k .

17. [4] Show that there cannot exist two distinct subgroups H1, H2 of G with equal sizes.

When considering objects in algebra, it is often equally important—if not more important—to consider relationships
between those objects. Thus we introduce the concept of group homomorphisms:

Let G , H be groups. A map (function) φ : G →G ′ is a homomorphism if it preserves the operation. That is, for all elements
g1, g2 ∈G we have

φ(g1 · g2) =φ(g1) ·φ(g2).

This is a little tricky; note that the · in the left-hand side is the operation in G while the · in the right-hand side is the
operation in G ′.

For the following problems we consider a homorphism φ : G →G ′.

18. [2] Let eG be the identity in G and eG ′ be the identity in G ′. Show that φ(eG ) = eG ′ .

19. [2] Show that for g ∈G , we have φ(g−1) =φ(g )−1.

The kernel of φ is defined to be
ker(φ) = {g ∈G|φ(g ) = e}

.

20. [4] Show that ker(φ) forms a subgroup of G .
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The image of φ is defined to be
im(φ) = {φ(g )|g ∈G}

.

21. [4] Show that im(φ) forms a subgroup of G ′.

Let H be a subgroup of G . Define the sets (subgroups)

g H = {g ·h|h ∈ H }

and
H g = {h · g |h ∈ H }.

These subgroups are called left and right cosets of H , respectively. H is called normal if g H = H g for all g ∈G .

The concept of normal subgroups is necessary for defining quotients (but perhaps is not obvious why):

Let H be a normal subgroup of G . The set of right cosets (an equivalent definition can be made with left cosets) of H then
forms a group, under the following operation:

(g1H) · (g2H) = (g1 · g2)H .

This group is denoted G/H .

It is true that for φ : G → G ′, ker(φ) and im(φ) are normal subgroups of their respective groups. Now let φ : G → G ′ be a
homomorphism.

A map φ : G →G ′ is an isomorphism if it is bijective. We say G ,G ′ are isomorphic and denote this as G 'G ′.

This final result is know as the first isomorphism theorem for groups.

22. [20] Show that im(φ) 'G/ker(φ).
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