Guts Round Solutions

Lexington High School

April 8, 2017

8th Annual Lexington Math Tournament - Guts Round - Part 1
Team Name:
1. [5] Find all pairs (<i>a</i> , <i>b</i>) of positive integers with $a > b$ and $a^2 - b^2 = 111$.
Proposed by: Peter Rowley
ANSWER: (20, 17), (56, 55)
SOLUTION: $a^2 - b^2 = 111 \Rightarrow (a + b)(a - b) = 111 111 = 3 \times 37$ so $(a + b, a - b)$ is either (37,3) or (111,1). This means that $(a, b) = (20, 17), (56, 55).$
2. [5] Alice drives at a constant rate of 2017 miles per hour. Find all positive values of x such that she can drive a distance of x^2 miles in a time of x minutes.
Proposed by: Yiming Zheng
ANSWER: $\frac{2017}{60}$
SOLUTION:
3. [5] <i>ABC</i> is a right triangle with right angle at <i>B</i> and altitude <i>BH</i> to hypotenuse <i>AC</i> . If $AB = 20$ and $BH = 12$, find the area of triangle $\triangle ABC$.
Proposed by: Peter Rowley
ANSWER: 150
SOLUTION: As $\triangle ABH$ is a right triangle we know that $AH = 4\sqrt{5}$. Since $\triangle ABH \sim \triangle BCH$ we know that $CH = 8 \times \frac{8}{4\sqrt{5}} =$
$\frac{16}{\sqrt{5}}, \text{ so } BC = \frac{16}{\sqrt{5}} \times \frac{12}{8} = \frac{24}{\sqrt{5}}. \text{ Thus we know that the area of } ABC \text{ is } \frac{1}{2}(12)\left(\frac{24}{\sqrt{5}}\right) = \frac{144}{\sqrt{5}} = \frac{144\sqrt{5}}{5}.$
8th Annual Lexington Math Tournament - Guts Round - Part 2
Team Name:
4. [5] Regular polygons P_1 and P_2 have n_1 and n_2 sides and interior angles x_1 and x_2 , respectively. If $\frac{n_1}{n_2} = \frac{7}{5}$ and $\frac{x_1}{x_2} = \frac{15}{14}$, find the ratio of the sum of the interior angles of P_1 to the sum of the interior angles of P_2 .
Proposed by: Peter Rowley
ANSWER: $\frac{3}{2}$
SOLUTION: The sum of the interior angles are $n_1 x_1$ and $n_2 x_2$ for P_1 and P_2 , respectively. Thus, the answer is $\frac{7}{5} \times \frac{15}{14} = \frac{3}{2}$.

5. [5] Joey starts out with a polynomial $f(x) = x^2 + x + 1$. Every turn, he either adds or subtracts 1 from f. What is the probability that after 2017 turns, f has a real root?

Proposed by: Evan Fang $\frac{1}{2}$ **ANSWER:** Say $f(x) = x^2 + x + c$ after 2017 turns. Then *f* has a real root iff $1 - 4c \ge 0$. Thus we have $c \le 0$, so we are **SOLUTION:** looking for the probability that Joey subtracts more times than he adds. Clearly, this happens $\frac{1}{2}$ of the time. 6. [5] Find the difference between the greatest and least positive integer values x such that $\sqrt[20]{\left\lfloor \frac{17}{\sqrt{x}}\right\rfloor} = 1$. Proposed by: Evan Fang 131070 **ANSWER:** The solution is just to note that $1 \le \sqrt[17]{x} < 2$ so the answer is $2^{17} - 2 = 131070$. **SOLUTION:** 8th Annual Lexington Math Tournament - Guts Round - Part 3 Team Name: 7. [6] Let ABCD be a square and suppose P and Q are points on sides AB and CD respectively such that $AP/PB = \frac{20}{17}$ and $CQ/QD = \frac{17}{20}$. Suppose that PQ = 1. Find the area of square *ABCD*. Proposed by: Nathan Ramesh 1369 **ANSWER:** 1378 Let the sidelength of the square be 37x. Then $(3x)^2 + (37x)^2 = 1 \implies 1378x^2 = 1$. We want $(37x)^2 = \frac{1369}{1378}$. **SOLUTION:** 8. [6] If $\frac{\sum_{n\geq 0} r^n}{\sum_{n\geq 0} r^{2n}} = \frac{1+r+r^2+r^3+\cdots}{1+r^2+r^4+r^6+\cdots} = \frac{20}{17},$ find *r*. Proposed by: Evan Fang $-20 + \sqrt{502}$ **ANSWER:** 2 We have $\frac{20}{1+r^2} = \frac{17}{1-r} \implies 17r^2 + 20r - 3 = 0$. Applying the quadratic formula we get two solutions $r = 17r^2 + 1$ **SOLUTION:** $\frac{-20\pm\sqrt{502}}{2}$. Since |r| < 1 we must have $r = \frac{-20+\sqrt{502}}{2}$. 9. [6] Let \overline{abc} denote the 3 digit number with digits a, b and c. If \overline{abc}_{10} is divisible by 9, what is the probability that abc_{40} is divisible by 9? Proposed by: Evan Fang $\frac{1}{3}$ **ANSWER:** We have $a + b + c \equiv 0 \pmod{9}$. Also, $40^2a + 40b + c \equiv 4^2a + 4b + c \equiv 16a + 7b + c \equiv 7a + 7b + c \equiv 6a + 6b$ **SOLUTION:** (mod 9)

Thus $9|\overline{abc}_{40} \iff 6a+6b \equiv 0 \pmod{9} \iff 2(a+b) \equiv 0 \pmod{3} \iff a+b \equiv 0 \pmod{3}$ We can bash this out and find that 30 ordered pairs of (a, b) satisfy this condition. Thus the answer is $\frac{30}{90} = \frac{1}{3}$

8th Annual Lexington Math Tournament - Guts Round - Part 4

Team Name:

10. [6] Find the number of factors of 20^{17} that are perfect cubes but not perfect squares.

Proposed by: Evan Fang

ANSWER: 54

SOLUTION: $20^{17} = 2^{34} \cdot 5^{17}$

In order for a number to be a perfect cube, the powers of each of its prime factors must be a multiple of 3. Thus, 2 can have a power of 0, 3, 6, ..., 33 and 5 can have a power of 0, 3, 6, ..., 15 giving a total of $12 \cdot 6 = 72$ cubes.

Now from this we need to subtract the number of numbers which are perfect squares and perfect cubes, meaning perfect 6th powers. Again, 2 can have a power of 0, 6, ..., 30 and 5 can have a power of 0, 6, 12 so there are $6 \cdot 3 = 18$ 6th powers.

The answer is 72 - 18 = 54

11. [6] Find the sum of all positive integers $x \le 100$ such that x^2 leaves the same remainder as x does upon division by 100.

Proposed by: Evan Fang

ANSWER: 202

SOLUTION: The condition is equivalent to $2^2 \cdot 5^2 = 100|(x^2 - x) = x(x - 1)$. Since gcd(x, x - 1) = 1, either 25|x or 25|(x - 1). If 25|x, it's easy to check that x = 25,100 are the only solutions. If 25|(x - 1), it's easy to check that x = 1,76 are the only solutions. The sum is 1 + 25 + 76 + 100 = 202.

12. [6] Find all *b* for which the base-*b* representation of 217 contains only ones and zeros.

Proposed by: Nathan Ramesh

ANSWER: 2, 6, 216, 217

SOLUTION: Clearly either b|216 or b|217. The latter immediately gives only b = 217 as $217 = 7 \cdot 31$. Furthermore, if b is a valid base, then we must have $b^k \le 217 \le 2b^k$ for some k. This gives $217 \ge b^k \ge 109$. If b|216, there is still a fair amount of testing that must be done.

- k = 7 has one check b = 2, which works
- k = 6 has no solutions
- k = 5 has no solutions
- k = 4 has no solutions
- k = 3 has one check b = 6, which works
- k = 2 has one check b = 12, which does not work
- k = 1 has one check b = 216, which works

The final solution set is 2, 6, 216, 217.

8th Annual Lexington Math Tournament - Guts Round - Part 5

Team Name:

13. [7] Two closed disks of radius $\sqrt{2}$ are drawn centered at the points (1,0) and (-1,0). Let \mathscr{P} be the region belonging to both disks. Two congruent non-intersecting open disks of radius *r* have all of their points in \mathscr{P} . Find the maximum possible value of *r*.

Proposed by: Nathan Ramesh

 $\sqrt{2}$

4

ANSWER:

SOLUTION: Clearly we have $1^2 + r^2 = (\sqrt{2} - r)^2$ which gives $r = \frac{1}{2\sqrt{2}}$. (or equivalently, $r = \frac{\sqrt{2}}{4}$.)

14. [7] A rectangle has positive integer side lengths. The sum of the numerical values of its perimeter and area is 2017. Find the perimeter of the rectangle.

Proposed by: Evan Fang

ANSWER: 172

SOLUTION: Let the lengths be *a* and *b*. Then ab+2a+2b = (a+2)(b+2) - 4 = 2017 so (a+2)(b+2) = 2021 = 2025 - 4 = (45+2)(45-2) = 47.43. WLOG we let $a+2 = 43 \implies a = 41$ and $b+2 = 47 \implies b = 45$ and so the perimeter is $2 \cdot (41+45) = 172$.

15. [7] Find all ordered triples of real numbers (*a*, *b*, *c*) which satisfy

a+b+c=6 $a \cdot (b+c) = 6$ $(a+b) \cdot c = 6.$

Proposed by: Nathan Ramesh

ANSWER: $(3 - \sqrt{3}, 0, 3 + \sqrt{3}), (3 + \sqrt{3}, 0, 3 - \sqrt{3}), (3 - \sqrt{3}, 2\sqrt{3}, 3 - \sqrt{3}), (3 + \sqrt{3}, -2\sqrt{3}, 3 + \sqrt{3})$

SOLUTION: Let $f(x) = x^2 - 6x + 6 = (x - \alpha)(x - \beta)$. WLOG suppose $a = \alpha$ and $(b + c) = \beta$ and we can permute α and β at the end. There are two cases

- Case 1: $c = \beta$, $(a + b) = \alpha$. In this case, $ac = \alpha\beta = 6$. Thus it follows that $ab = 0 \implies b = 0$. The solution in this case is $(a, b, c) = (\alpha, 0, \beta)$.
- Case 2: $c = \alpha$, $(a + b) = \beta$. In this case the solution is $(a, b, c) = (\alpha, \beta \alpha, \alpha)$.

Solving gives α , $\beta = 3 \pm \sqrt{3}$. The solutions are

 $(a, b, c) = (3 - \sqrt{3}, 0, 3 + \sqrt{3}), (3 + \sqrt{3}, 0, 3 - \sqrt{3}), (3 - \sqrt{3}, 2\sqrt{3}, 3 - \sqrt{3}), (3 + \sqrt{3}, -2\sqrt{3}, 3 + \sqrt{3}).$

.....

Team Name: _____

16. [7] A four digit positive integer is called *confused* if it is written using the digits 2, 0, 1, and 7 in some order, each exactly one. For example, the numbers 7210 and 2017 are confused. Find the sum of all confused numbers.

Proposed by: Nathan Ramesh

 ANSWER:
 64995

 SOLUTION:
 Take averages! The answer is $18(\frac{10}{3} \cdot 1000 + \frac{10}{4} \cdot 111) = 60000 + 45 \cdot 111 = 64995.$

17. [7] Suppose $\triangle ABC$ is a right triangle with a right angle at *A*. Let *D* be a point on segment *BC* such that $\angle BAD = \angle CAD$. Suppose that AB = 20 and AC = 17. Compute *AD*.

Proposed by: Nathan Ramesh

ANSWER	$340\sqrt{2}$
ANSWER.	37

SOLUTION: Extend *AD* to a point *E* such that *BE* is parallel to *AC*. Note that $\triangle BED \sim \triangle CAD$, which gives

$$AD = \frac{AC}{AC + BE} \cdot AE$$
$$= \frac{AC}{AC + AB} \cdot AB\sqrt{2}$$
$$= \frac{340\sqrt{2}}{37}.$$

18. [7] Let *x* be a real number. Find the minimum possible positive value of

 $\frac{|x-20|+|x-17|}{x}.$

Proposed by: Nathan Ramesh

3

 $\overline{20}$

ANSWER:

SOLUTION: Let *c* be the desired minimum. Define f(x) = -cx + |x - 20| + |x - 17|. By graphical analysis, it is evident that the minimum of *f* occurs either x = 17 or x = 20. Note that f(20) = 3 - 20c < 3 - 17c = f(17). Thus, if *f* has at least one zero, then min(*f*) = $f(20) = 3 - 20c \le 0 \implies c \ge \frac{3}{20}$. The minimum possible positive value of *c* is $\frac{3}{20}$.

8th Annual Lexington Math Tournament - Guts Round - Part 7

Team Name: _____

19. [8] Find the sum of all real numbers 0 < x < 1 that satisfy $\{2017x\} = \{x\}$.

Proposed by: Nathan Ramesh

ANSWER: $\frac{2015}{2}$

SOLUTION:

20. [8] Let a_1, a_2, \dots, a_{10} be real numbers which sum to 20 and satisfy $\{a_i\} < 0.5$ for $1 \le i \le 10$. Find the sum of all possible values of

$$\sum_{\leq i < j \le 10} \lfloor a_i + a_j \rfloor.$$

Here, $\lfloor x \rfloor$ denotes the greatest integer x_0 such that $x_0 \le x$ and $\{x\} = x - \lfloor x \rfloor$.

1

Proposed by: Evan Fang

ANSWER: 810

SOLUTION: Note that the condition $\{a_i\} < 0.5$ implies that $\{a_i + a_j\} = \{a_i\} + \{a_j\}$. Thus, we have

$$\sum_{1 \le i < j \le 10} \lfloor a_i + a_j \rfloor = \sum_{1 \le i < j \le 10} (a_i + a_j) - \sum_{1 \le i < j \le 10} \{a_i + a_j\}$$
$$= 180 - \sum_{1 \le i < j \le 10} \{a_i + a_j\}$$
$$= 180 - \sum_{1 \le i < j \le 10} \{a_i\} + \{a_j\}$$
$$= 180 - 9 \sum_{i=1}^{10} \{a_i\}.$$

Let $S = \sum_{i=1}^{10} \{a_i\}$. Since $\sum_{i=1}^{10} a_i$ is an integer, it follows by taking mod 1 that *S* is an integer as well. Furthermore, since each term of *S* is strictly less than 0.5, it follows that $S < 10 \cdot 0.5 = 5$. It's easy to check that the possible values of *S* are 0, 1, 2, 3, 4. The sum of all possible values of the desired sum is $180 \cdot 5 - 9 \cdot (0 + 1 + 2 + 3 + 4) = 810$.

21. **[8**] Compute the remainder when 20^{2017} is divided by 17.

Proposed by: Janabel Xia **ANSWER:** 3 **SOLUTION:** Note $20^{16} \equiv 3^{16} \equiv (-4)^4 \equiv 1 \pmod{17}$. Then $20^{2017} \equiv 3^{2016} \cdot 3 \equiv 3^{16 \cdot 126} \cdot 3 \equiv 3 \pmod{17}$.

8th Annual Lexington Math Tournament - Guts Round - Part 8

Team Name:

22. [8] Let $\triangle ABC$ be a triangle with a right angle at *B*. Additionally, let *M* be the midpoint of *AC*. Suppose the circumcircle of $\triangle BCM$ intersects segment *AB* at a point $P \neq B$. If CP = 20 and BP = 17, compute *AC*.

Proposed by: Nathan Ramesh

ANSWER: $2\sqrt{370}$

SOLUTION: Let *O* be the circumcenter of *PBCM*. Since $\angle PBC$ is right, it follows that $\angle PMC$ is right as well. Thus, $\triangle APC$ is isosceles. It follows that

$$AC = \sqrt{AB^2 + BC^2}$$

= $\sqrt{(AP + PB)^2 + CP^2 - BP^2}$
= $\sqrt{(20 + 17)^2 + 20^2 - 17^2}$
= $\sqrt{1480}$
= $2\sqrt{370}$.

23. [8] Two vertices on a cube are called *neighbors* if they are distinct endpoints of the same edge. On a cube, how many ways can a nonempty subset *S* of the vertices be chosen such that for any vertex $v \in S$, at least two of the three neighbors of *v* are also in *S*? Reflections and rotations are considered distinct.

Proposed by: Nathan Ramesh

ANSWER: 31

SOLUTION: Casework

24. [8] Let x be a real number such that $x + \sqrt[4]{5 - x^4} = 2$. Find all possible values of $x\sqrt[4]{5 - x^4}$.

Proposed by: Nathan Ramesh

 $\frac{21}{2}$

SOLUTION: Let $y = \sqrt[4]{5 - x^4}$ for simplicity. Then we have x + y = 2 and $x^4 + y^4 = 5$, and we seek to find xy. Let s = x + y = 2 and p = xy. We have

$$5 = x^{4} + y^{4}$$

= $(x^{2} + y^{2})^{2} - 2x^{2}y^{2}$
= $(s^{2} - 2p)^{2} - 2p^{2}$
= $(4 - 2p)^{2} - 2p^{2}$
= $2p^{2} - 16p + 16$.

We find that $2(p-4)^2 - 21 = 0 \implies p = 4 \pm \sqrt{\frac{21}{2}}$. Notice that if *x* must be positive because if *x* were nonpositive we would have $x + y \le y \le \sqrt[4]{5-x^4} < 2$. Suppose $xy = 4 + \sqrt{\frac{21}{2}}$. Then one of *x*, *y* is greater than 2. This contradicts x + y = 2. It follows that $p = 4 - \sqrt{\frac{21}{2}}$.

8th Annual Lexington Math Tournament - Guts Round - Part 9

Team Name:

25. [9] Let S be the set of the first 2017 positive integers. Find the number of elements $n \in S$ such that

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

is even.

Proposed by: Evan Fang

ANSWER: 1025

SOLUTION: Notice that $\lfloor \frac{n}{k} \rfloor$ counts the number of multiples of *k* less than or equal to *n*. So each number less than *n* is counted once for each divisor it has (so 6 would be counted 4 times, for $\lfloor \frac{n}{1} \rfloor$, $\lfloor \frac{n}{2} \rfloor$, $\lfloor \frac{n}{3} \rfloor$, $\lfloor \frac{n}{6} \rfloor$ if $n \ge 6$)

Now, denote $\tau(n)$ to be the number of divisors of *n*. Then $\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor = \tau(1) + \tau(2) + ... + \tau(n)$. It is well known that only square numbers have an odd number of divisors.

 $\tau(1)$ is odd so $\tau(1) + \tau(2), \tau(1) + \tau(2) + \tau(3)$ are also odd because $\tau(2)$ and $\tau(3)$ are even since they are not squares. Thus, the number of n such that this is even are the n that are in [4,9) U [16,25) U U [1936,2017) or

$$(3^2 - 2^2) + (5^2 - 4^2) + (7^2 - 6^2) + (9^2 - 8^2) + \dots + (45^2 - 44^2) - (45^2 - 2017 + 1) = 5 + 9 + 13 + \dots + 89 - 9 = 94 + 11 - 9 = 1025$$

26. [9] Let $\{x_n\}_{n\geq 0}$ be a sequence with $x_0 = 0, x_1 = \frac{1}{20}, x_2 = \frac{1}{17}, x_3 = \frac{1}{10}$, and $x_n = \frac{1}{2}(x_{n-2} + x_{n-4})$ for $n \geq 4$. Compute

$$\left\lfloor \frac{1}{x_{2017!} - x_{2017!-1}} \right\rfloor.$$

Proposed by: Nathan Ramesh

ANSWER: 170

SOLUTION: Denote N = 2017!. Let $y_n = x_{2n-1}$. For convenience set $x_{-1} = 0$. Then $y_n = \frac{1}{2}(y_{n-1} + y_{n-2})$. Defining $z_n = \frac{340}{3}y_n$ is becomes clear that

$$z_n = \sum_{k=0}^{n-1} \left(-\frac{1}{2} \right)^k$$

for $n \ge 1$. Noting that z_n converges to $\frac{2}{3}$ makes it apparent that $z_{N/2} = \frac{2}{3} - \varepsilon$ for some negligibly small positive epsilon. Despite being incredibly small, noticing that epsilon is positive is the key to correctly evaluating the floor. Now, we have

$$y_{N/2} = \frac{1}{170} - \frac{3\varepsilon}{340}$$

from which it follows that

$$\left\lfloor \frac{1}{x_{2017!} - x_{2017!-1}} \right\rfloor = \left\lfloor \frac{1}{\frac{1}{170} - \frac{3\varepsilon}{340}} \right\rfloor = 170.$$

27. [9] Let *ABCDE* be be a cyclic pentagon. Given that $\angle CEB = 17$, find $\angle CDE + \angle EAB$, in degrees.

Proposed by: Evan Fang

ANSWER: 197

SOLUTION: Notice $\angle CDE = \angle BDC + \angle BDA + \angle ADE = \frac{CB+BA+AE}{2}$ and $\angle EAB = \angle EAD + \angle DAC + \angle CAB = \frac{ED+DC+CB}{2}$. Thus $\angle CDE + \angle EAB = \frac{BA+AE+ED+DC+CB+CB}{2} = 180 + \frac{CB}{2} = 180 + \angle CEB = 197$.

8th Annual Lexington Math Tournament - Guts Round - Part 10

Team Name:

28. [11] Let $S = \{1, 2, 4, \dots, 2^{2016}, 2^{2017}\}$. For each $0 \le i \le 2017$, let x_i be chosen uniformly at random from the subset of *S* consisting of the divisors of 2^i . What is the expected number of distinct values in the set $\{x_0, x_1, x_2, \dots, x_{2016}, x_{2017}\}$?

Proposed by: Nathan Ramesh

ANSWER: $\frac{2019}{2}$

SOLUTION: For brevity, denote $P = \{x_0, x_1, \dots, x_{2017}\}$. For each $0 \le i \le 2017$, let $X_i = 1$ if $2^i \in P$, and $X_i = 0$ otherwise. Note that the expected value $\mathbb{E}[X_i]$ is the probability that $2^i \in P$. The probability that $2^i \notin P$ is equal to

$$\frac{i}{i+1} \cdot \frac{i+1}{i+2} \cdots \frac{2016}{2017} \cdot \frac{2017}{2018} = \frac{i}{2018},$$

since for each $j \ge i$, the probability that $x_j \ne i$ is $\frac{j}{j+1}$. Thus we have $\mathbb{E}[X_i] = 1 - \frac{i}{2017}$. The expected number of distinct values in *P* is

$$\mathbb{E}[X_0 + X_1 + X_2 + \dots + X_{2016} + X_{2017}]$$

By linearity of expectation, we have

$$\sum_{i=0}^{2017} \mathbb{E}[X_i] = \sum_{i=0}^{2017} 1 - \frac{i}{2018}$$
$$= 2018 - \frac{1}{2018} \sum_{i=0}^{2017} i$$
$$= 2018 - \frac{1}{2018} \cdot \frac{2017 \cdot 2018}{2}$$
$$= \frac{2019}{2}.$$

29. [11] For positive real numbers *a* and *b*, the points (a, 0), (20, 17) and (0, b) are collinear. Find the minimum possible value of a + b.

Proposed by: Nathan Ramesh

ANSWER: $37 + 4\sqrt{85}$

SOLUTION: For some constant *c*, we have $20 = c \cdot a$ and $17 = (1 - c) \cdot b$. Thus,

$$a+b=\frac{20}{c}+\frac{17}{1-c}\ge\frac{(\sqrt{20}+\sqrt{17})^2}{(c)+(1-c)}=37+4\sqrt{85},$$

where the inequality follows from Titu's Lemma.

30. [11] Find the sum of the distinct prime factors of $2^{36} - 1$.

Proposed by: Anka Hu

ANSWER: 266

SOLUTION: We have

$$2^{36} - 1 = (2^{18} - 1)(2^{18} + 1)$$

= $(2^9 - 1)(2^9 + 1)(2^{18} + 2 \cdot 2^9 + 1 - 2^{10})$
= $(2^3 - 1)(2^6 + 2^3 + 1)(2^3 + 1)(2^6 - 2^3 + 1)((2^9 + 1)^2 - (2^5)^2)$
= $7 \cdot 73 \cdot 9 \cdot 57 \cdot (2^9 - 2^5 + 1)(2^9 + 2^5 + 1)$
= $7 \cdot 73 \cdot 3^2 \cdot 3 \cdot 19 \cdot 481 \cdot 545$
= $7 \cdot 73 \cdot 3^3 \cdot 19 \cdot 13 \cdot 37 \cdot 5 \cdot 109$.

so the distinct prime factors are 3, 5, 7, 13, 19, 37, 73, 109. Adding gives 266.

.....

8th Annual Lexington Math Tournament - Guts Round - Part 11

Team Name:

____31. [13] There exist two angle bisectors of the lines y = 20x and y = 17x with slopes m_1 and m_2 . Find the unordered pair (m_1, m_2) .

Proposed by: Nathan Ramesh, Srinivasan Sathiamurthy

ANSWER:
$$\frac{339 \pm \sqrt{116290}}{37}$$

SOLUTION: Let *ABCD* be a rhombus. Then *AD* is the angle bisector of $\angle BAC$. Call the lines ℓ_1 and ℓ_2 , respectively. In the fact above, take

$$A = (0,0)$$

$$B = (\sqrt{b^2 + 1}, a\sqrt{b^2 + 1})$$

$$C = (\sqrt{a^2 + 1}, b\sqrt{a^2 + 1})$$

$$D = (\sqrt{a^2 + 1} + \sqrt{b^2 + 1}, a\sqrt{b^2 + 1} + b\sqrt{a^2 + 1})$$

It follows that the slope of the angle bisector AD is

$$\frac{a\sqrt{b^2+1}+b\sqrt{a^2+1}}{\sqrt{a^2+1}+\sqrt{b^2+1}} = \frac{\sqrt{a^2+1}\sqrt{b^2+1}+ab-1}{a+b}.$$

Taking a = 20 and b = 17 gives the slopes

$$\frac{339 \pm \sqrt{116290}}{37}$$

32. [13] Triangle $\triangle ABC$ has sidelengths AB = 13, BC = 14, CA = 15 and orthocenter *H*. Let Ω_1 be the circle through *B* and *H*, tangent to *BC*, and let Ω_2 be the circle through *C* and *H*, tangent to *BC*. Finally, let $R \neq H$ denote the second intersection of Ω_1 and Ω_2 . Find the length *AR*.

Proposed by: Yiming Zheng

ANSWER: $\frac{66}{17}$

SOLUTION: Call the feet of the altitudes D, E, F as shown and let R' be the intersection of the circumcircles of AEHF and ABC. If M is the midpoint of BC, it is well known that the reflection of H over M, say H', is the antipode of A with respect to the circumcircle of ABC. Since $\angle AR'H = \angle AR'H' = 90^\circ$, it follows that R', H, M, H' are collinear. We have

$$MH \cdot MR' = MH' \cdot MR' = MB \cdot MC = MB^2$$
,

which implies that *BC* is tangent to the circumcircle of *BHR*'. Analogously, one can show that *BC* is tangent to the circumcircle of *CHR*'. Thus, R = R'. To finish the problem, note that $\triangle ARH \sim \triangle MDH$, so

$$AR = DM \cdot \frac{AH}{HM}.$$

We have DM = 2 and $D = \frac{3}{4} \cdot 5 = \frac{15}{4}$. Thus $AH = 12 - \frac{15}{4} = \frac{33}{4}$. Finally, recognize that DHM is an 8-15-17 right triangle, so $HM = \frac{17}{4}$. Thus, we have

$$AR = DM \cdot \frac{AH}{HM} = 2 \cdot \frac{33}{17} = \frac{66}{17}$$

33. [13] For a positive integer *n*, let $S_n = \{1, 2, 3, ..., n\}$ be the set of positive integers less than or equal to *n*. Additionally, let

$$f(n) = |\{x \in S_n : x^{2017} \equiv x \pmod{n}\}|$$

Find f(2016) - f(2015) + f(2014) - f(2013).

Proposed by: Evan Fang

ANSWER: 139

SOLUTION:

.....

8th Annual Lexington Math Tournament - Guts Round - Part 12

Team Name:

34. [15] Estimate the value of

 $\sum_{n=1}^{2017} \varphi(n),$

where $\varphi(n)$ is the number of numbers less than or equal *n* that are relatively prime to *n*. If your estimate is *E* and the correct answer is *A*, your score for this problem will be

$$\max\left(0, \left\lfloor 15 - 75 \frac{|A-E|}{A} \right\rfloor\right).$$

Proposed by: Nathan Ramesh

ANSWER: 1237456

SOLUTION: See A002088 of OEIS

35. [15] An *up-down* permutation of order *n* is a permutation σ of $(1, 2, 3, \dots n)$ such that $\sigma(i) < \sigma(i+1)$ if and only if *i* is odd. Denote by P_n the number of up-down permutations of order *n*. Estimate the value of $P_{20} + P_{17}$. If your estimate is *E* and the correct answer is *A*, your score for this problem will be

$$\max\left(0,16-\left\lceil\max\left(\frac{A}{E},\frac{E}{A}\right)\right\rceil\right).$$

Proposed by: Nathan Ramesh

ANSWER: 370581053580501

SOLUTION: See A000111 of OEIS

36. [15] For positive integers *n*, *superfactorial* of *n*, denoted *n*\$, is defined as the product of the first *n* factorials. In other words, we have

$$n\$ = \prod_{i=1}^{n} (i!).$$

Estimate the number of digits in the product $(20\$) \cdot (17\$)$. If your estimate is *E* and the correct answer is *A*, your score for this problem will be

$$\max\left(0, \left\lfloor 15 - \frac{1}{2}|A - E| \right\rfloor\right).$$

Proposed by: Nathan Ramesh

ANSWER: 260

SOLUTION: See A000178 of OEIS