Guts Round ## Lexington High School April 8, 2017 | | 8th Annual Lexington Math Tournament - Guts Round - Part 1 | |----|---| | | Team Name: | | 1. | [5] Find all pairs (a, b) of positive integers with $a > b$ and $a^2 - b^2 = 111$. | | 2. | [5] Alice drives at a constant rate of 2017 miles per hour. Find all positive values of x such that she can drive a distance of x^2 miles in a time of x minutes. | | 3. | [5] ABC is a right triangle with right angle at B and altitude BH to hypotenuse AC . If $AB = 20$ and $BH = 12$, find the area of triangle $\triangle ABC$. | | | 8th Annual Lexington Math Tournament - Guts Round - Part 2 | | | Team Name: | | 4. | [5] Regular polygons P_1 and P_2 have n_1 and n_2 sides and interior angles x_1 and x_2 , respectively. If $\frac{n_1}{n_2} = \frac{7}{5}$ and $\frac{x_1}{x_2} = \frac{15}{14}$, find the ratio of the sum of the interior angles of P_1 to the sum of the interior angles of P_2 . | | 5. | [5] Joey starts out with a polynomial $f(x) = x^2 + x + 1$. Every turn, he either adds or subtracts 1 from f . What is the probability that after 2017 turns, f has a real root? | | 6. | [5] Find the difference between the greatest and least positive integer values x such that $\sqrt[20]{\left\lfloor \frac{17}{\sqrt{x}} \right\rfloor} = 1$. | | | | | | 8th Annual Lexington Math Tournament - Guts Round - Part 3 | |-------|---| | | Team Name: | | | 7. [6] Let $ABCD$ be a square and suppose P and Q are points on sides AB and CD respectively such that $AP/PB = \frac{20}{17}$ and $CQ/QD = \frac{17}{20}$. Suppose that $PQ = 1$. Find the area of square $ABCD$. | | | 3. [6] If | | | $\frac{\sum_{n\geq 0} r^n}{\sum_{n\geq 0} r^{2n}} = \frac{1+r+r^2+r^3+\cdots}{1+r^2+r^4+r^6+\cdots} = \frac{20}{17},$ | | | find r . | | | | | : | 9. [6] Let \overline{abc} denote the 3 digit number with digits a, b and c . If \overline{abc}_{10} is divisible by 9, what is the probability that \overline{abc}_{40} is divisible by 9? | | ••••• | 8th Annual Lexington Math Tournament - Guts Round - Part 4 | | | Team Name: | | 1 | 0. [6] Find the number of factors of 20^{17} that are perfect cubes but not perfect squares. | | | | | 1 | 1. [6] Find the sum of all positive integers $x \le 100$ such that x^2 leaves the same remainder as x does upon division by 100. | | 1 | 2. [6] Find all b for which the base- b representation of 217 contains only ones and zeros. | | | 8th Annual Lexington Math Tournament - Guts Round - Part 5 | | | Team Name: | | 1 | 3. [7] Two closed disks of radius $\sqrt{2}$ are drawn centered at the points (1,0) and (-1,0). Let \mathscr{P} be the region belonging to both disks. Two congruent non-intersecting open disks of radius r have all of their points in \mathscr{P} . Find the maximum possible value of r . | | 1 | [7] A rectangle has positive integer side lengths. The sum of the numerical values of its perimeter
and area is 2017. Find the perimeter of the rectangle. | | 1 | 5. [7] Find all ordered triples of real numbers (a, b, c) which satisfy | | | a+b+c=6 | | | | | | $a \cdot (b+c) = 6$ | | | 8th Annual Lexington Math Tournament - Guts Round - Part 6 | |---|---| | | Team Name: | | 16. | [7] A four digit positive integer is called <i>confused</i> if it is written using the digits 2,0,1, and 7 in some order, each exactly one. For example, the numbers 7210 and 2017 are confused. Find the sum of all confused numbers. | | 17. | [7] Suppose $\triangle ABC$ is a right triangle with a right angle at A . Let D be a point on segment BC such that $\angle BAD = \angle CAD$. Suppose that $AB = 20$ and $AC = 17$. Compute AD . | | 18. | [7] Let <i>x</i> be a real number. Find the minimum possible positive value of | | | $\frac{ x-20 + x-17 }{x}.$ | | | 8th Annual Lexington Math Tournament - Guts Round - Part 7 | | | Team Name: | | 19. | [8] Find the sum of all real numbers $0 < x < 1$ that satisfy $\{2017x\} = \{x\}$. | | 20. | [8] Let a_1, a_2, \dots, a_{10} be real numbers which sum to 20 and satisfy $\{a_i\} < 0.5$ for $1 \le i \le 10$. Find the sum of all possible values of $\sum_{1 \le i < j \le 10} \lfloor a_i + a_j \rfloor.$ | | | Here, $\lfloor x \rfloor$ denotes the greatest integer x_0 such that $x_0 \le x$ and $\{x\} = x - \lfloor x \rfloor$. | | 21. | [8] Compute the remainder when 20^{2017} is divided by 17. | | • | | | | 8th Annual Lexington Math Tournament - Guts Round - Part 8 | | | Team Name: | | 22. | [8] Let $\triangle ABC$ be a triangle with a right angle at B . Additionally, let M be the midpoint of AC . Suppose the circumcircle of $\triangle BCM$ intersects segment AB at a point $P \neq B$. If $CP = 20$ and $BP = 17$, compute AC . | | 23. | [8] Two vertices on a cube are called <i>neighbors</i> if they are distinct endpoints of the same edge. On a cube, how many ways can a nonempty subset S of the vertices be chosen such that for any vertex $v \in S$, at least two of the three neighbors of v are also in S ? Reflections and rotations are considered distinct. | | 24. | [8] Let x be a real number such that $x + \sqrt[4]{5 - x^4} = 2$. Find all possible values of $x\sqrt[4]{5 - x^4}$. | | | | | 8th Annual Lexington Math Tournament - Guts Round - Part 9 | |---| | Team Name: | | 25. [9] Let <i>S</i> be the set of the first 2017 positive integers. Find the number of elements $n \in S$ such that | | $\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$ | | is even. | | 26. [9] Let $\{x_n\}_{n\geq 0}$ be a sequence with $x_0=0, x_1=\frac{1}{20}, x_2=\frac{1}{17}, x_3=\frac{1}{10}$, and $x_n=\frac{1}{2}(x_{n-2}+x_{n-4})$ for $n\geq 4$. Compute $\left\lfloor \frac{1}{x_{2017!}-x_{2017!-1}} \right\rfloor.$ | | 27. [9] Let $ABCDE$ be be a cyclic pentagon. Given that $\angle CEB = 17$, find $\angle CDE + \angle EAB$, in degrees. | | 8th Annual Lexington Math Tournament - Guts Round - Part 10 | | Team Name: | | 28. [11] Let $S = \{1, 2, 4, \dots, 2^{2016}, 2^{2017}\}$. For each $0 \le i \le 2017$, let x_i be chosen uniformly at random from the subset of S consisting of the divisors of 2^i . What is the expected number of distinct values in the set $\{x_0, x_1, x_2, \dots, x_{2016}, x_{2017}\}$? | | 29. [11] For positive real numbers a and b , the points $(a,0)$, $(20,17)$ and $(0,b)$ are collinear. Find the minimum possible value of $a+b$. | | 30. [11] Find the sum of the distinct prime factors of $2^{36} - 1$. | | | | 8th Annual Lexington Math Tournament - Guts Round - Part 11 | | | |---|--|--| | | Team Name: | | | 31. | [13] There exist two angle bisectors of the lines $y = 20x$ and $y = 17x$ with slopes m_1 and m_2 . Find the unordered pair (m_1, m_2) . | | | 32. | [13] Triangle $\triangle ABC$ has sidelengths $AB=13, BC=14, CA=15$ and orthocenter H . Let Ω_1 be the circle through B and H , tangent to BC , and let Ω_2 be the circle through C and C , and the length C and C . Finally, let C | | | 33. | [13] For a positive integer n , let $S_n = \{1, 2, 3,, n\}$ be the set of positive integers less than or equal to n . Additionally, let | | | | $f(n) = \{x \in S_n : x^{2017} \equiv x \pmod{n}\} .$ | | | | Find $f(2016) - f(2015) + f(2014) - f(2013)$. | | | Wa | rning: The next round is the final round and will consist of three estimation problems. | | | | 8th Annual Lexington Math Tournament - Guts Round - Part 12 | | | | Team Name: | | | 34. | [15] Estimate the value of $\sum_{n=1}^{2017} \varphi(n),$ | | | | where $\varphi(n)$ is the number of numbers less than or equal n that are relatively prime to n . If your estimate is E and the correct answer is A , your score for this problem will be | | | | $\max\left(0,\left\lfloor 15-75\frac{ A-E }{A}\right\rfloor\right).$ | | | 35. | [15] An up -down permutation of order n is a permutation σ of $(1,2,3,\cdots n)$ such that $\sigma(i) < \sigma(i+1)$ if and only if i is odd. Denote by P_n the number of up-down permutations of order n . Estimate the value of $P_{20} + P_{17}$. If your estimate is E and the correct answer is E , your score for this problem will be $\max\left(0,16 - \left\lceil \max\left(\frac{A}{E},\frac{E}{A}\right)\right\rceil\right).$ | | | 36. | [15] For positive integers n , $superfactorial$ of n , denoted n \$, is defined as the product of the first n factorials. In other words, we have $n\$ = \prod_{i=1}^n (i!).$ | | | | Estimate the number of digits in the product (20\$) \cdot (17\$). If your estimate is E and the correct answer is E , your score for this problem will be | | $\max(0,\lfloor 15-\frac{1}{2}|A-E|\rfloor).$