Speed Round Solutions

LMT "Fall"

December 17, 2022

1. [6] Each box represents 1 square unit. Find the area of the shaded region.

Proposed by Hannah Shen

Solution. 18
We count 16 unit squares and two parallelograms, each of which also have area 1 , so the total shaded area is $16+2 * 1=18$.
2. [6] Evaluate $\left(3^{3}\right) \sqrt{5^{2}-2^{4}}-5 \cdot 9$.

Proposed by Brandon Ni
Solution. 36
Compute the expression gives us $27 * \sqrt{9}-45=81-45=36$
3. [6] Find the last two digits of 21^{3}.

Proposed by Jeff Lin
Solution. 61
$21^{3}=9261$, so the answer is 61
4. [6] Let L, M, and T be distinct prime numbers. Find the least possible odd value of $L+M+T$.

Proposed by Aidan Duncan
Solution. 15
None of the primes can be 2 because $2+$ odd prime + odd prime is even. Therefore, we need the next 3 smallest odd primes, which are 3,5 , and 7 which sum to 15 .
5. [6] Two circles have areas that sum to 20π and diameters that sum to 12 . Find the radius of the smaller circle.

Proposed by Jeff Lin
Solution. 2
$x+y=6, x^{2}+y^{2}=20$. Solve. $x=2, y=4$.
6. [6] Zach and Evin each independently choose a date in the year 2022, uniformly and randomly. The probability that at least one of the chosen dates is December 17, 2022 can be expressed as $\frac{A}{B}$ for relatively prime positive integers A and B. Find A.

Proposed by Evin Liang

Solution. 729
Use PIE. There are 365 days in 2022. $\frac{1}{365}+\frac{1}{365}-\frac{1}{365^{2}}=\frac{2 \cdot 365-1}{365^{2}}=\frac{729}{365^{2}}$. Because $729=3^{6}$, and $\operatorname{gcd}\left(3^{6}, 365^{2}\right)=1$, we get that $a=729$.
7. [6] Let L be a list of 2023 real numbers with median m. When any two numbers are removed from L, its median is still m. Find the greatest possible number of distinct values in L.

Proposed by Muztaba Syed

Solution. 2021
After removing 2 values the median can be any of the 3 middle values. This means these are all the same, so there is a maximum of 2023-2 $=2021$ distinct values.
8. [6] Some children and adults are eating a delicious pile of sand. Children comprise 20% of the group and combined, they consume 80% of the sand. Given that on average, each child consumes N pounds of sand and on average, each adult consumes M pounds of sand, find $\frac{N}{M}$.
Proposed by Hannah Shen
Solution. 16
Assume there are 20 children and 80 adults, splitting 100 pounds of sand. Then, each child will eat $\frac{80}{20}=4$ pounds, whereas each adult will eat $\frac{20}{80}=\frac{1}{4}$ pounds. Hence, $\frac{N}{M}=\frac{4}{1 / 4}=16$.
9. [6] An integer N is chosen uniformly and randomly from the set of positive integers less than 100. The expected number of digits in the base-10-representation of N can be expressed as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.
Proposed by Hannah Shen
Solution. 21011
There are 9 values of N for which N would have 1 digit: $1,2,3, \ldots 9$. There are 90 values of N for which N would have 2 digits: $10,11,12, \ldots 99$. Hence, the expected value is $\frac{9 * 1+90 * 2}{99}=\frac{21}{11}$, so $1000 A+B=21011$.
10. [6] Dunan is taking a calculus course in which the final exam counts for 15% of the total grade. Dunan wishes to have an A in the course, which is defined as a grade of 93% or above. When counting everything but the final exam, he currently has a 92% in the course. What is the minimum integer grade Dunan must get on the final exam in order to get an A in the course?

Proposed by Samuel Wang

Solution. 99
WLOG, assume that there are a total of 500 points to be gained from this course. Of them, 75 come from the final but 425 come from everything else. Dunan currently has a 92%, corresponding to 391 points. He wishes to have a total of 465 points in the course, meaning he must get at least a 74 on the final exam, or $98 . \overline{6} \%$. Taking the smallest larger integer, the answer is 99 .
11. [6] Norbert, Eorbert, Sorbert, and Worbert start at the origin of the Cartesian Plane and walk in the positive y, positive x, negative y, and negative x directions respectively at speeds of $1,2,3$, and 4 units per second respectively. After how many seconds will the quadrilateral with a vertex at each person's location have area 300 ?
Proposed by Muztaba Syed

Solution. 5
If the time is s, then we have a quadrilateral with perpendicular diagonals of length $4 s$ and $6 s$, which has an area of $\frac{1}{2} \cdot 4 s \cdot 6 s=12 s^{2}=300 \Longrightarrow s=5$.
12. [6] Find the sum of the unique prime factors of 1020201.

Proposed by Hannah Shen
Solution. 161
Note that $1020201=1010000+10100+101$, or $101 * 10101.101$ is prime, but 10101 can be written as $10^{4}+10^{2}+$ $1=\left(10^{2}+1\right)^{2}-10^{2}=\left(10^{2}+10+1\right)\left(10^{2}-10+1\right)$ through difference of squares. $10^{2}+10+1=111=3 * 37$ and $10^{2}-10+1=91=7 * 13$, so our sum is $101+37+13+7+3=161$.
13. [6] HacoobaMatata rewrites the base-10 integers from 0 to 30 inclusive in base 3. How many times does he write the digit 1 ?
Proposed by Muztaba Syed
Solution. 33
0 to 26 consists of every string with length 3 consisting of $0,1,2$. By symmetry $\frac{1}{3}$ of the digits will be 1 , which gives $27 \cdot 3 \div 3=27$. A quick check gives $27,28,29,30$ have the digit 16 times for an answer of 33
14. [6] The fractional part of x is $\frac{1}{7}$. The greatest possible fractional part of x^{2} can be written as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.
Proposed by Hannah Shen
Solution. 43049
We can express X as $n+\frac{1}{7}$ where n is $\lfloor X\rfloor$. Then, $X^{2}=n^{2}+\frac{2}{7} n+\frac{1}{49}$. Only the latter two terms can be fractional, so we must maximize the fractional part of $\frac{2}{7} n+\frac{1}{49}$, which occurs when $n \equiv 3(\bmod 7)$, making the fractional part $\frac{6}{7}+\frac{1}{49}=\frac{43}{49}$. Hence, $A+B=92$
15. [6] For how many integers x is $-2 x^{2}+8 \geq x^{2}-3 x+2$?

Proposed by bn
Solution. 4
The 2 quadratics intersect at $(-1,6)$ and $(2,0)$. There are 4 values, $-1,0,1,2$, that satisfy the inequality.
16. [6] In the figure below, circle ω is inscribed in square $E F G H$, which is inscribed in unit square $A B C D$ such that $\overline{E B}=2 \overline{A E}$. If the minimum distance from a point on ω to $A B C D$ can be written as $\frac{P-\sqrt{Q}}{R}$ with Q square-free, find $10000 P+100 Q+R$.
Proposed by Hannah Shen
Solution. 30506
The distance from $A B C D$ to the center of ω is $\frac{1}{2}$; we need to subtract the radius of ω from this value. The radius is half of $\overline{E F}$, or $\frac{1}{2} \cdot \frac{\sqrt{5}}{3}$. So, the distance from $A B C D$ to ω is $\frac{1}{2}-\frac{\sqrt{5}}{6}=\frac{3-\sqrt{5}}{6}$, and $10000 A+100 B+C=30506$.

17. [6] There are two base number systems in use in the LHS Math Team. One member writes " 13 people use my base, while 23 people use the other, base 12." Another member writes "out of the 34 people in the club, 10 use both bases while 9 use neither." Find the sum of all possible numbers of Math Team members, as a regular decimal number.
Proposed by Jerry Xu
Solution. 37
Say the first person is speaking in base b. He thus says that $b+3$ people use his base and $2 b+3$ people use base $b+2$. The other member could either be speaking in base b or in base $b+2$. If he's speaking in base b, he says there are $3 b+4$ people, b of which can speak both bases and 9 of which can speak neither. The Principle of Inclusion and Exclusion tells us that

$$
3 b+4=b+3+2 b+3-b+9=2 b+15
$$

In this case, we have $b=11$, and there are a total of $3 \cdot 11+4=37$ member in the club in this case. The other case is that the other person speaks in base $b+2$. In this case, he's saying that $3(b+2)+4=3 b+10$ people are in the club, $b+2$ people speak both bases and 9 people can speak in neither. Once again by the Principle of Inclusion and Exclusion, we have that

$$
3 b+10=b+3+2 b+3-b-2+9=2 b+13 .
$$

We thus have that $b=3$, but wait! 7 is not a valid numeral in base 3 , so this solution is extraneous. Our answer is thus 37 .
18. [6] Sam is taking a test with 100 problems. On this test the questions gradually get harder in such a way that for question i, Sam has a $\frac{(101-i)^{2}}{100} \%$ chance to get the question correct. Suppose the expected number of questions Sam gets correct can be written as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.
Proposed by Samuel Wang
Solution. 6767200
The expected number is $\frac{100^{2}+99^{2}+\cdots+1^{2}}{10000}=\frac{\frac{100 \cdot 101 \cdot 201}{6}}{10000}=\frac{6767}{200}$, so the answer is 6767200 .
19. [6] In an ordered 25 -tuple, each component is an integer chosen uniformly and randomly from $\{1,2,3,4,5\}$. Ephram and Zach both copy this tuple into a 5×5 grid, both starting from the top-left corner. Ephram writes five components from left to right to fill one row before continuing down to the next row. Zach writes five components from top to bottom to fill one column before continuing right to the next column. Find the expected number of spaces on their grids where Zach and Ephram have the same integer written.
Proposed by Hannah Shen

Solution. 9
Since they're copying from the same list, their 5 entries along the diagonal must be the same. For the remaining 20 spaces, there's a $\frac{1}{5}$ chance they have the same number written. So, our expected value is $5+20 \cdot \frac{1}{4}=9$.
20. [6] In $\triangle A B C$ with circumcenter O and circumradius $8, B C=10$. Let r be the radius of the circle that passes through O and is tangent to $B C$ at C. The value of r^{2} can be written as $\frac{m}{n}$ for relatively prime positive integers m and n. Find $1000 m+n$.
Proposed by Muztaba Syed

Solution. 1024039
Let the midpoint of $B C$ be M, the circumcenter of $A B C$ be O, the midpoint of $O C$ be D, and the center of the new circle be E. E lies on the perpendicular bisector of $O A$ and $E C \perp B C$. We get that: $\angle E C D=90-\angle O C M=\angle M O C$. Thus $\triangle C M O \sim \triangle E D C$. By the Pythagorean Theorem $O M=\sqrt{39}$, so we have: $\frac{O M}{C M}=\frac{D C}{E C}=\frac{\sqrt{39}}{8}=\frac{4}{E C} \Longrightarrow E C=$ $\frac{32}{\sqrt{39}} \Longrightarrow 1000 m+n=1024+39=1024039$
21. [6] Find the number of integer values of n between 1 and 100 inclusive such that the sum of the positive divisors of $2 n$ is at least 220% of the sum of the divisors of n.
Proposed by Muztaba Syed
Solution. 75
Let $v_{2}(n)$ denote the greatest positive integer k with $2^{k} \mid n$. If $v_{2}(n)=0$, then the sum of the divisors will be 3 times the sum of the divisors of $\mathrm{n} . v_{2}(n)=1$ also works, as the sum of the divisors will be $\frac{7}{3}$ times more, which is $>220 \%$. But $\nu_{2}(n)=3$ won't work, as the sum of the divisors will be $\frac{15}{7}<220 \%$. Clearly bigger powers of 2 will only be worse. So multiples of 4 will not work, giving us an answer of 75
22. [6] Twenty urns containing one ball each are arranged in a circle. Ernie then moves each ball either 1, 2 or 3 urns clockwise, chosen independently, uniformly, and randomly. The expected number of empty urns after this process is complete can be expressed as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.

Proposed by Hannah Shen

Solution. 160027
Label the urns $U_{1}, U_{2}, U_{3} \ldots U_{20}$, and the balls $B_{1}, B_{2}, B_{3} \ldots B_{20}$. For urn U_{n} to become empty, balls $B_{n-1}, B_{n-2}, B_{n-3}$ must not end up in U_{n}. This occurs with probability $\frac{2}{3} * \frac{2}{3} * \frac{2}{3}=\frac{8}{27}$. Hence, the expected number of empty urns is $20 * \frac{8}{27}=\frac{160}{27}$, so $1000 A+B=160027$.
23. [6] Hannah the cat begins at 0 on a number line. Every second, Hannah jumps 1 unit in the positive or negative direction, chosen uniformly at random. After 7 seconds, Hannah's expected distance from 0 , in units, can be expressed as $\frac{A}{B}$ for relatively prime positive integers A and B. Find $1000 A+B$.

Proposed by Hannah Shen

Solution. 5001
Note that if the cat is at 0 , its expected distance from 0 must increase by 1 in the next second, but at any other number, its expected distance will not change.

We must thus find the probability that the cat is at 0 after each second; this is the value by which the cat's expected distance will increase in the next second.
After n seconds, if n is odd, the probability is clearly 0 . If even, there are $\binom{n}{n / 2}$ sequences of steps that land the cat at 0 , since it must have taken an equal number of left and right steps. There are a total of 2^{n} sequences it could've taken. Hence, the probability is $\frac{\binom{n}{n / 2}}{2^{n}}$.
Adding 1 to this expression for $n=2,4,6$ yields $1+\frac{1}{2}+\frac{6}{16}+\frac{20}{64}=\frac{35}{16}$, so $1000 A+B=5001$.
24. [6] Find the product of all primes $p<30$ for which there exists an integer n such that p divides $n+(n+1)^{-1}(\bmod p)$. Proposed by Muztaba Syed

Solution. 5187
$n+(n+1)^{-1} \equiv 0 \Longrightarrow(n+1)^{-1} \equiv-n \Longrightarrow(n+1)(-n) \equiv 1 \Longrightarrow n^{2}+n+1 \equiv 0 \bmod p$. If $n \equiv 1 \bmod p$, then $p=3$ works, otherwise: $n^{2}+n+1 \equiv \frac{n^{3}-1}{n-1} \equiv 0 \Longrightarrow n^{3} \equiv 1 \bmod p$. Because $n \not \equiv 1 \bmod p$, the order of $n \bmod p$ is 3 . This means that there is a solution if and only if $3 \mid p-1$, so $p \equiv 1 \bmod 3$, so p can be $7,13,19$, so the sum is $3 * 7 * 13 * 19=5187$.
25. [6] In quadrilateral $A B C D, \angle A B D=\angle C B D=\angle C A D, A B=9, B C=6$, and $A C=10$. The area of $A B C D$ can be expressed as $\frac{P \sqrt{Q}}{R}$ with Q squarefree and P and R relatively prime. Find $10000 P+100 Q+R$.
Proposed by Jerry Xu
Solution. 134504
Say that $A C$ and $B D$ intersect at E. By angle bisector theorem,

$$
\begin{aligned}
& A E=\frac{9}{9+6} \cdot 10=6 \\
& C E=\frac{6}{9+6} \cdot 10=4
\end{aligned}
$$

Then by Stewarts,

$$
\begin{aligned}
9^{2} \cdot 4+6^{2} \cdot 6 & =4 \cdot 6 \cdot 10+10 \cdot B E^{2} \\
324+216 & =240+10 \cdot B E^{2} \\
300 & =10 \cdot B E^{2} \\
B E & =\sqrt{30} .
\end{aligned}
$$

We can then note that as $\angle C A D=\angle C B D, A B C D$ is cyclic (because the two angles would subtend the same arc on the circle and therefore have equal measure). Then by Power of a Point,

$$
\begin{aligned}
6 \cdot 4 & =B E \cdot D E \\
24 & =\sqrt{30} \cdot D E \\
D E & =\frac{24}{\sqrt{30}}=\frac{24 \sqrt{30}}{30}=\frac{4 \sqrt{30}}{5}
\end{aligned}
$$

Now we can note two things: firstly, as $\angle A B D=\angle C B D$, the minor arcs subtended by $A D$ and $C D$ have equal length so $A D=C D$. The second thing we can note is that, by Ptolemy's,

$$
\begin{aligned}
6 \cdot A D+9 \cdot C D & =\left(\frac{4 \sqrt{30}}{5}+\sqrt{30}\right)(6+4) \\
15 \cdot A D & =\frac{9 \sqrt{30}}{5} \cdot 10 \\
15 \cdot A D & =18 \sqrt{30} \\
A D=C D & =\frac{6 \sqrt{30}}{5} .
\end{aligned}
$$

Now we can simply apply Brahamagupta's to find that

$$
\begin{aligned}
{[A B C D] } & =\sqrt{(s-A B)(s-B C)(s-C D)(s-A D)} \\
& =\sqrt{\left(\frac{75+12 \sqrt{30}}{10}-6\right)\left(\frac{75+12 \sqrt{30}}{10}-9\right)\left(\frac{75+12 \sqrt{30}}{10}-\frac{6 \sqrt{30}}{5}\right)\left(\frac{75+12 \sqrt{30}}{10}-\frac{6 \sqrt{30}}{5}\right)} \\
& =\sqrt{\left(\frac{15+12 \sqrt{30}}{10}\right)\left(\frac{-15+12 \sqrt{30}}{10}\right)\left(\frac{15}{2}\right)^{2}} \\
& =\sqrt{(15+12 \sqrt{30})(-15+12 \sqrt{30})\left(\frac{15}{20}\right)^{2}} \\
& =\frac{3}{4} \cdot \sqrt{(12 \sqrt{30})^{2}-15^{2}} \\
& =\frac{3}{4} \cdot \sqrt{4095}=\frac{9 \sqrt{455}}{4} \Longrightarrow 134504 .
\end{aligned}
$$

